
DIFFERENTIAL POSETS

SIMON RUBINSTEIN-SALZEDO

Abstract. In this paper, we give a sampling of the theory of differential posets,
including various topics that excited me. Most of the material is taken from Richard
Stanley’s survey paper [3], and some is from the section on differential posets in the
second edition of his book [2]. Not too much is original: I reworked a few of the
proofs, so they might be a bit different from Stanley’s version, and some of the
material of random walks is my own contribution.

1. Introduction and Examples

We begin, appropriately enough, by defining differential posets.

Definition 1. Let r be a positive integer. We say that a poset P is r-differential if

(1) P is locally finite, graded, and has a 0̂ element.
(2) If x and y are two distinct elements of P , and there are k elements covered

by both x and y, then there are also k elements covering both x and y.
(3) If x ∈ P and x covers exactly k elements of P , then x is covered by exactly

k + r elements of P .

If P is r-differential for some r, we say that P is a differential poset.

In fact, part (2) of the definition can only happen for k = 0 or 1, for if x and y are
of minimal rank with the property that they are covered by k ≥ 2 elements, they also
cover k elements, so in particular they cover two elements z1 and z2 that are covered
by x and y, and hence k ≥ 2 for z1 and z2, which contradicts minimality of rank.

It is not completely trivial to find examples of differential posets. Probably the
easiest example is the Young poset Y , defined as follows: As a set, Y consists of all
Young tableaux for all partitions of all nonnegative integers. We say that λ ≤ µ if λ
is contained in µ, i.e., if λ = λ1 + λ2 + · · · and µ = µ1 + µ2 + · · · , where the λi’s and
µi’s are nonincreasing, then λi ≥ µi for all i.

Proposition 2. Y is 1-differential.

Proof. First, Y is locally finite because between any two Young tableaux λ and µ,
with λ ≤ µ, there are only finitely many other Young tableaux lying between them. Y
is graded as follows: the rank of λ is n if λ is a partition of n. Y has a minimal element
which is the (unique) partition of 0. Now, let λ and µ be two different partitions. If
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there are any elements covered by both λ and µ, then λ and µ are both partitions of
the same integer n, and there’s exactly one element covering both of them, namely
the union of their diagrams. In this case, they both cover the intersection of the
diagrams. Finally, suppose λ covers k elements. Then k is the number of distinct
parts of λ, since we can remove one from one of these distinct parts to make a partition
λ′ covered by λ. The number of partitions covering λ is then k+1, for we can increase
any part by 1, or we can add a new part of size 1. �

Let’s look at an example of the second condition for being a differential poset. Let

λ = , µ = .

They both cover their intersection

,

and both are covered by their union

.

Once we have one differential poset P , we can generate others.

Proposition 3. If P is an r-differential poset, then the poset P k is a kr-differential
poset.

Proof. The minimal element is (0̂, . . . , 0̂). It is graded by the sum of the gradings
of the components, and it is locally finite, since an interval is the product of the
component intervals. If x and y cover z, then x and y differ in one or two com-
ponents only. Suppose they differ in exactly one component. Then we can write
x = (a1, . . . , ai, . . . , ak) and y = (a1, . . . , a

′
i, . . . , ak). Thus ai and a′i cover a unique

element, so they are covered by a unique element a′′i . Thus x and y are both cov-
ered by (a1, . . . , a

′′
i , . . . , ak). Now, suppose they differ in exactly two places, so that
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x = (a1, . . . , ai, . . . , aj, . . . , ak) and y = (a1, . . . , a
′
i, . . . , a

′
j, . . . , ak). Thus either ai cov-

ers a′i and aj is covered by a′j, or the reverse is true. Without loss of generality, suppose
ai covers a′i and aj is covered by a′j. Then x and y cover (a1, . . . , a

′
i, . . . , aj, . . . , ak)

and are covered by (a1, . . . , ai, . . . , a
′
j, . . . , ak). Finally, suppose x covers ` elements,

and that the ith component of x covers `i elements, so that
∑

`i = `. Then the ith

component of x is covered by `i + r elements, so x is covered by
∑

(`i + r) = ` + kr
elements, as desired. �

Since Y is a 1-differential poset, then, Y r is an r-differential poset. Hence, r-
differential posets exist for all r.

There is another class of important differential posets, the so-called Fibonacci
posets.

Definition 4. Let Ar = {11, 12, . . . , 1r, 2}, and let A∗
r be the set of all finite-length

words in the elements of Ar. We define a poset Z(r) to be the poset whose underlying
set is A∗

r, and so that if w1, w2 ∈ Z(r), then w1 covers w2 if either

(1) we obtain w2 from w1 by changing the last 2 in the initial string of 2’s in w1

to some 1i, or
(2) we obtain w2 from w1 by deleting the first 1i from w1.

We call Z(r) the r-Fibonacci poset.

Theorem 5. Z(r) is an r-differential poset.

Proof. The minimal element 0̂ is the empty word, and Z(r) is graded by the sum of
the weights of the letters in its string, where the weight of 1i is 1 and the weight of
2 is 2. Since there are only finitely many possible strings of each grading and the
grading is discrete, Z(r) is locally finite.

Let’s now check condition (2). Suppose x and y are two elements of Z(r) so that x
and y cover a unique element z. Let z = 2k1is for some string s. (It’s possible there
is no 1i; that will change very little.) We have two cases now:

(1) x = 2k+1s and y = 2`1j2
k−`1is,

(2) x = 2m1p2
k−m1is and y = 2`1j2

k−`1is.

In either case, we take w = 2k+11is. Then w is the the unique element covering both x
and y. Similarly, if there’s an element covering x and y, we can construct an element
covered by both x and y.

Finally, we check condition (3). If the initial string of 2’s of x has length k, then
we could have obtained this initial string by replacing any 1i in any of these positions
with a 2, in kr ways; if the initial string is followed by some 1i, then there’s one more
way we could have obtained x, namely from inserting this 1i. Hence there are either
kr or kr + 1 elements covered by x, depending on whether the string has any 1’s or
not. To obtain strings covering x, we can place a 1i between any two 2’s or at the
beginning or end of the string of 2’s, in (k + 1)r ways, and if x has any 1’s, we can



4 SIMON RUBINSTEIN-SALZEDO

also replace the initial 1 with a 2. Hence there are either (k + 1)r or (k + 1)r + 1
words covering x. Thus Z(r) is r-differential. �

In fact, Z(r) is irreducible, in the sense that if Z(r) = P ×Q, then either P or Q
is the trivial poset.

If P is a graded poset and x ∈ P , write ρ(x) for the rank of x, and write pn for
the number of elements of P of rank n. An interesting open problem on differential
posets is the following:

Conjecture 6. Let P be an r-differential poset. Then for each i ≥ 0, pi(Y
r) ≤

pi(P ) ≤ pi(Z(r)).

The r-Fibonacci poset is so-named because pi(Z(1)) = Fi+1, the (i+1)st Fibonacci
number. More generally, pi(Z(r)) satisfies the recursion

pi+1(Z(r)) = rpi(Z(r)) + pi−1(Z(r)), p0(Z(r)) = 1, p1(Z(r)) = r.

A problem that Richard Stanley posed in his survey paper on differential posets
[3] is to determine the automorphism groups of the Z(r)’s. He suggested that this
would probably not be too difficult, and this turned out to be true: the problem
was solved by Jonathan Farley and Sungsoon Kim in 2004 [1]. Here we’ll determine
the automorphism group only for Z(1), although the general case is similar in flavor,
albeit a bit more tedious.

Theorem 7. The automorphism group of Z(1) is Z/2Z, with the nontrivial auto-
morphism being defined by

σ(w11) = w2, σ(w2) = w11, σ(x) = x for x not ending in 11 or 2.

Proof. It suffices to understand the automorphisms on a the subposet consisting of
elements of rank at most n for each n. By inspection, it is easy to see that, up to rank
2, this is the only nontrivial automorphism, and that σ is in fact an automorphism
on all of Z(1). Now, suppose τ were any automorphism. Then either τ(11) = 11 or
τ(11) = 2. In the latter case, we can compose τ with σ, so without loss of generality,
we may assume that τ(11) = 11. Hence, τ is the identity up to rank 2. Suppose
that τ were not the identity. Then there would be some minimal rank n so that τ
were not the identity up to rank n. Hence, there must be an element x of rank n
so that τ(x) 6= x. But since τ is the identity on rank n − 1, it must be the case
that x and τ(x) cover exactly the same elements, so by a previous discussion, x and
τ(x) cover exactly one element. The elements x of rank at least 3 covering exactly
one element are precisely those beginning with a 1. But if x and y are two distinct
elements beginning with a 1, then they cover no common elements. Hence there are
no additional automorphisms. �

One question we might ask is whether it is possible to start with a finite poset that
“appears” to be the first few levels of an r-differential poset, and complete it into
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a full r-differential poset. Indeed, this is possible, and the Fibonacci posets can be
constructed in this way.

Definition 8. Let P be a finite graded poset of rank n that satisfies the first two
conditions for being an r-differential poset, and also satisfies the third for any element
x of rank less than n. We call such a poset an r-differential poset up to rank n.

We can extend such a P to an r-differential poset ΩP up to rank n + 1, as follows:
For each s ∈ Pn−1, construct an element t to have rank n + 1, so that t covers u if
and only if u covers s. Then, add r new elements x1, . . . , xr of rank n + 1 for each
x ∈ Pn, so that xi covers x and nothing else. We may iterate this process infinitely
many times to get an r-differential poset Ω∞P . Here is a picture of this “reflection”
process, taken from [2]:

So, one way to construct the Fibonacci poset Z(r) is to start with the trivial poset

0̂, which is r-differential up to rank 0, and take Ω∞0̂. The Young poset, however,
does not arise from completing a 1-differential poset up to rank n, for any n. To see
this, note that if P is the completion of an r-differential poset up to rank n, then for
i > n, we have

pi(P ) = rpi−1(P ) + pi−2(P ),

and the partition function satisfies no such recursion. More generally, for n sufficiently
large, if we truncate the Young poset up to rank n to get Y [n] and look at Ω∞Y [n],
these are all distinct. Hence, there are infinitely many pairwise nonisomorphic 1-
differential posets.

2. The U and D Operators

The real interest in differential posets comes from two linear transformations asso-
ciated to them. Let K be a field, and let S be a set. Let K[S] denote the K-vector
space with basis S, and let K[[S]] denote the K-vector space of all (possibly infinite)
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formal linear combinatorions of elements of S. For a locally finite poset P and x ∈ P ,
let

C−(x) = {y ∈ P : x covers y},
C+(x) = {y ∈ P : y covers x}.

Definition 9. Let P be a locally finite poset so that for all x ∈ P , C−(x) and C+(x)
are finite. Define two linear maps U,D : K[[P ]] → K[[P ]] by

Ux =
∑

y∈C+(x)

y,

Dx =
∑

y∈C−(x)

y.

Note that the sums defining Ux and Dx are finite, so these transformations do
in fact make sense. Furthermore, when restricted to K[P ], U and D are still linear
transformations.

Combinatorially, Ux and Dx will be useful for counting paths in P . However, if
we have a probabilistic take on life, we may prefer to take random walks and look at
the behavior of such walks. For such people, it will be more natural to look at the
transformations

Ũx =
1

|C+(x)|
∑

y∈C+(x)

y,

D̃x =
1

|C−(x)|
∑

y∈C−(x)

y.

We will briefly mention random walks on differential posets later in this paper.
There are now two easy results we can prove about these operators and differential

posets. For a subset S ⊂ P , we write S =
∑

s∈S s ∈ K[[P ]].

Theorem 10. (1) Let P be a locally finite graded poset with 0̂ and having finitely
many elements of each rank. Then the following are equivalent for an integer
r.
(a) P is r-differential.
(b)

(∗) DU − UD = rI.

(2) DP = (U + r)P .

Proof. (1) Let x ∈ P . Then DUx =
∑

y cyy, where cy = #(C+(x) ∩ C+(y)), and

UDx =
∑

y dyy, where dy = #(C−(x) ∩ C−(y)), so DU − UD = rI if and
only if

#(C+(x) ∩ C+(y)) = #(C−(x) ∩ C−(y))
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for all distinct x, y ∈ P and #C+(x)−#C−(x) = r.
(2) Suppose DP =

∑
x axx. Then ax = #C+(x). Likewise, if (U + r)P =∑

x bxx, then bx = r + #C−(x). This is exactly the third condition for being
a differential poset.

�

Proposition 11. Let P be an r-differential poset, and let s(n, k) and S(n, k) be the
Stirling numbers of the first and second kinds, respectively. Then

(UD)n =
n∑

k=0

rn−kS(n, k)UkDk

and

UnDn =
n∑

k=0

rn−ks(n, k)(UD)k.

We may interpret this result as telling us about a random walk on the levels of P ,
as follows. For x ∈ P of rank k, we first move to some y ∈ C−(x) and then move to
some z ∈ C+(y), so that the ranks of x and z are equal. (Note that this random walk
is not quite the same as moving to some y ∈ C+(x) and then to some z ∈ C−(y). For
example, if P = Z(r) is the Fibonacci poset, the latter walk is more likely to remain
at x, since there are r elements of C+(x) which cover only x.)

The proposition allows us a path to studying the dynamics and stationary distri-
bution of this walk: we’d like to understand the dynamics of (UD)n as n gets large,
but on a fixed level k, it’s equal to the finite sum

k∑
`=0

rn−`S(n, `)U `D`,

since if we go down at least k + 1 times, we go below the 0̂ element, and hence get
zero. I suspect that attempting to carry out this procedure in general will be very
difficult.

Fortunately, through different means, we can work out the stationary distribution
of the walk. Let’s look at Z(1) first before doing the general case. The beginning of
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the poset looks like

1111

GGGGGGGG 211

FF
FF

FF
FF

121 22

zz
zz

zz
zz

112

zz
zz

zz
zz

111 21

yy
yy

yy
yy

DDDDDDDD 12

11

FF
FF

FF
FF

F 2

zz
zz

zz
zz

z

1

0̂

The transition matrix for the level four random walk is
1/2 1/4 0 0 0
1/2 5/12 1/3 1/6 0
0 1/6 1/3 1/6 0
0 1/6 1/3 5/12 1/2
0 0 0 1/4 1/2

 .

Its stationary distribution is
1

7
(1, 2, 1, 2, 1)T .

The interpretation of this is that the stationary distribution at x is proportional to
the size of C−(x). This holds more generally for all differential posets P .

To see this, we’ll look at two consecutive levels k−1 and k of P , and we’ll consider
its transition matrix A. Let v be the vector whose x component is the degree of x.
Then the x component of Av is∑

z→x

1

deg(z)
deg(z) = deg(x).

Hence v is the stationary distribution for A, and hence the stationary distribution
for A2 as well. Restricting A and v to those components of level k gives the desired
result.

At this point, and probably much earlier, the reader may wonder why differential
posets are so named. Suppose f(x) is a C∞ function, and D = d

dx
. Then we have

D(xf(x)) = xD(f(x)) + f(x),

or

(Dx− xD)f(x) = f(x),
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so the operator Dx− xD is the identity operator. (In particular, Dx and xD fail to
commute.) Replacing x by U here, we recover equation (∗) above, for r = 1. More
generally, if we’re working in an r-differential poset and g is any polynomial, then

Df(U)− f(U)D = rf ′(U).

This is the origin of the nomenclature.

3. Path Counting

One of the primary uses for the operators U and D on a differetial poset is for
counting Hasse walks on P .

Definition 12. A Hasse walk of length n on a poset P is a sequence x0, . . . , xn of
elements of P so that for each i with 0 ≤ i ≤ n− 1, xi+1 ∈ C+(xi) ∪ C−(xi).

Frequently, we wish to be more specific about the walks allowed: for instance,
perhaps we insist that the first step goes up, then the next two go down, and so forth.
We’ll frequently also specify conditions for the allowed starting and ending points of
the walk.

In order to count allowable Hasse walks, we first have to define a topology on K[[P ]].
We do this by giving K[P ] the discrete topology, and giving K[[P ]] the topology defined

by
∑∞

i=0 aixi being the limit of
∑N

i=0 aixi.
This allows us to define a bilinear form 〈·, ·〉 : K[[P ]]×K[P ] → K by 〈x, y〉 = δxy,

and extending by bilinearity, together with continuity in the first slot. Since we only
allow finite linear combinations in the second slot, the sum〈∑

axx,
∑

bxx
〉

=
∑

axbx

is finite; we cannot extend this form to K[[P ]] in the second slot, since we cannot
interpret infinite sums in K.

If P is a differential poset, then U and D are adjoint operators, since

〈Dx, y〉 = 〈x, Uy〉 =

{
1 x ∈ C+(y),

0 otherwise,

and similarly 〈Ux, y〉 = 〈x, Dy〉.
Let’s also set α(0 → n) equal to the number of Hasse walks 0̂ = x0 → x1 → · · · →

xn on P , so that each xi+1 covers xi (so in particular the level of xi is i). Clearly,

〈DnP , 0̂〉 = α(0 → n),

and the number of Hasse walks starting and ending at level n is

〈(U + D)nP , 0̂〉,
a number we’ll call δn.

Surprisingly, α(0 → n) does not depend much on the choice of P .
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Theorem 13. Let P be an r-differential poset. Then∑
n≥0

α(0 → n)
tn

n!
= exp

(
rt +

1

2
rt2
)

.

Proof. See Stanley, Proposition 3.1, page 927–928. �

In the case where P is the Young poset Y , this theorem (together with some facts
on symmetric functions) tells us that α(0 → n) in Y is equal to the number of σ ∈ Sn

so that σ2 = 1. Note that α(0 → n) is equal to the number of standard Young
tableaux of size n. In fact, there’s an elegant bijective proof of this, based on the
Robinson-Schensted Correspondence. Generally, the Robinson-Schensted Correspon-
dence associates to some σ ∈ Sn a pair (T1, T2) of standard Young tableaux of the
same shape and size n. However, associated to σ−1 is the pair (T2, T1), so when σ is
an involution, we get the same tableau twice. Since the correspondence is bijective,
it restricts to a bijection between involutions in Sn and standard Young tableaux of
size n.

Let’s illustrate the Robinson-Schensted Correspondence for an involution in S8.
Consider the permutation σ = (14)(26)(78). We first write down the permutation as
46315287, where the ith place is σ(i). We construct two tableaux out of this: in the
first, we try to place each new number as it appears in the sequence above in the first
row of the tableau, bumping other digits out of the way to lower rows if necessary.
In the second, we track the order of the changing shape of the tableau. Hence, after
one step the tableaux are

4 , 1 .

After the second step, the tableaux become

4 6 , 1 2 .

When we try to place the 3, we need to bump the 4 down, so after the third step, we
get

3 6
4 ,

1 2
3 .

Continuing on, we get

1 6
3
4 ,

1 2
3
4 ,

then
1 5
3 6
4 ,

1 2
3 5
4 ,
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then

1 2
3 5
4 6 ,

1 2
3 5
4 6 ,

then

1 2 8
3 5
4 6 ,

1 2 7
3 5
4 6 ,

then

1 2 7
3 5 8
4 6 ,

1 2 7
3 5 8
4 6 .

As we expected, since σ is an involution, the two tableaux are identical.
It will be useful to generalize the α notation to other types of Hasse walks. It

is easiest to explain the notation by means of an example: α(4 → 6 → 2 →
5) denotes the number of sequences (x0, . . . , x9) so that x0, x1, . . . , x9 have ranks
4, 5, 6, 5, 4, 3, 2, 3, 4, 5, respectively, and

x0 < x1 < x2 > x3 > x4 > x5 > x6 < x7 < x8 < x9.

For x ∈ P , let e(x) be the number of maximal chains from 0̂ to x. Hence, if Pn

denotes the set of elements of P of rank n, then we have

α(0 → n → 0) =
∑
x∈Pn

e(x)2, α(n → 0 → n) =

(∑
x∈Pn

e(x)

)2

.

For x ∈ P , let ρ(x) denote the rank of x. We let

F (P, q) =
∑
x∈P

qρ(x) =
∑
n≥0

α(n)qn.

It is well-known, for example, that

F (Y, q) =
∏
n≥1

(1− qn)−1.

4. The Characteristic Polynomial

Since differential posets come equipped with two particularly well-behaved linear
transformations, it is natural to use linear algebra in order to study their properties.
For example, the eigenvalues of U and D, restricted to the jth level, are relevant for
counting the number of elements of rank j in a poset P .
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Theorem 14. Let P be an r-differential poset, let pn be the number of elements of
rank n, and set ∆pn = pn − pn−1. Then, for j ∈ N, the characteristic polynomial of
UD, restricted to the rank j elements of P , is equal to

j∏
i=0

(λ− ri)∆pj−i .

On the other hand, the characteristic polynomial of DU , restricted to the rank j
elements of P , is equal to

j∏
i=0

(λ− r(i + 1))∆pj−i .

In particular, D is surjective, and U is injective.

Proof. See [3], Theorem 4.1 and Corollary 4.2, pages 940–941. �

Corollary 15. For any differential poset P , p0 ≤ p1 ≤ p2 ≤ · · · .

Proof. The operator U is injective. �

It turns out that, if we look at just a small piece of a differential poset P , we can
reconstruct much information about the entire poset. Let Pa,b be the subposet of P
consisting of all elements x with a ≤ ρ(x) ≤ b.

Theorem 16. Suppose P and Q are r- and s-differential posets, respectively. Suppose
that, for some i, j ∈ N, we have Pi−1,i

∼= Qj−1,j as posets (or even just as graphs).
Then one of these two possibilities holds:

(1) r = s, i = j, and pk = qk for 0 ≤ k ≤ j.
(2) One of (r, i) and (s, j) is equal to (1, 2), and the other is equal to (2, 1). Also,

Pi−1,i
∼= Qj−1,j

∼= K1,2.

Proof. This is Corollary 4.5, pages 941–942 in [3] �
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