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1 Motivation

Suppose we want to define a nonconstant entire function f(z) on C which is invariant
with respect to a lattice Λ generated by 1 and τ , where τ ∈ C \ R. Because of
Liouville’s Theorem, this is impossible, but we can try to find a nonconstant function
that comes as close as possible to being doubly periodic and still entire. With this in
mind, we look for quasi-periodic entire functions f(z) satisfying

f(z + 1) = f(z), f(z + τ) = eaz+bf(z).

Suppose that such a function were to exist. Since f is entire and periodic, we can
write f in terms of a Fourier series:

f(z) =
∞∑

n=−∞

ane
2πinz,

where the an’s are the Fourier coefficients of f . Let us evaluate f(z + τ + 1) in two
ways. Let us first absorb the 1 and then the τ to get

f(z + τ + 1) = f(z + τ) = eaz+bf(z). (1)

If we absorb the τ before the 1, we get

f(z + τ + 1) = ea(z+1)+bf(z + 1) = eaeaz+bf(z). (2)
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Therefore a = 2πik for some k ∈ Z. Now let us substitute the Fourier series for
f(z + τ) into (1) to get

∞∑
n=−∞

ane
2πinτe2πinz = f(z + τ)

= e2πikz+bf(z)

=
∞∑

n=−∞

ane
2πi(n+k)z+b

=
∞∑

n=−∞

an−ke
2πinz+b.

Therefore
an = an−ke

b−2πinτ

for all n ∈ Z. If k = 0, we have the rather dull solution of f(z) = e2πiz. If, however,
we choose k = −1, we have, for all n ∈ Z,

an = a0e
πin(n−1)τ−nb.

Therefore

f(z) = a0

∞∑
n=−∞

eπin2τ+2πinz−πinτ−nb.

With this in mind, we define a function ϑ of two variables:

ϑ(z, τ) =
∞∑

n=−∞

eπin2τ+2πinz,

where z ∈ C and τ ∈ H = {w ∈ C | =w > 0}.

One motivation for working with the ϑ function is that it provides us with very elegant
solutions to several problems in number theory, as we shall soon see.

2 Elliptic Properties of the ϑ Function

As mentioned in the previous section, we define ϑ : C×H → C by

ϑ(z, τ) =
∞∑

n=−∞

eπin2τ+2πinz.
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Note that the series converges absolutely and uniformly on all compact sets. If we
hold τ constant, then the series looks like a Fourier series, so we can write

ϑ(z, τ) =
∞∑

n=−∞

an(τ)e2πinz,

where an(τ) = eπin2τ . It is clear that ϑ has period 1 in the first variable, but the
Fourier coefficients suggest some other quasi-periodic behavior with a quasi-period of
τ . This is in fact the case:

ϑ(z + τ, τ) =
∞∑

n=−∞

eπin2τ+2πin(z+τ)

=
∞∑

n=−∞

eπi(n+1)2τ−πiτ+2πinz

=
∞∑

n=−∞

eπin2τ−πiτ+2πinz−2πiz

= e−πiτ−2πizϑ(z, τ).

This indeed corresponds to the k = −1 case mentioned in the previous section when
we restrict our function to the first variable. Therefore the ϑ function exhibits prop-
erties similar to those of elliptic functions. In fact, after finding a product formula
for ϑ(z, τ), we will find an elliptic function related to both the ϑ function and the
Weierstraß ℘ function.

Before we work out the product formula for the ϑ function, let us note that eπiτ is
frequently denoted by q, with the understanding that the normally multivalued qw

will denote eπiwτ . With this in mind, our ϑ function becomes

ϑ(z, q) =
∞∑

n=−∞

qn2

e2πinz,

defined on C×D∗, where D∗ = {w ∈ C : 0 < |w| < 1}. We shall adopt this convention
when convenient from now on.

As is often the case in mathematics and especially in complex analysis, we would like
to find a product representation for the ϑ function. Therefore it is useful to look for
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the zeros of ϑ(z, τ). We shall therefore show that if z =
(
m + 1

2

)
+
(
n + 1

2

)
τ for some

m, n ∈ Z, then ϑ(z, τ) = 0. Because of the quasi-periodic properties, it suffices to
show that ϑ

(
1+τ
2

, τ
)

= 0. Therefore we write

ϑ

(
1 + τ

2
, τ

)
=

∞∑
n=−∞

(−1)neπi(n2+n)τ .

Since the sum is absolutely convergent, we can change the order of the terms. There-
fore we sum n and −n − 1 together and notice that the two of these sum to 0.
Therefore the entire sum is 0, as desired.

Let us define a product that has simple zeros at the same places as the zeros of ϑ
that we already know about. An appropriate definition would therefore be

Π(z, τ) =
∞∏

n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz),

which is holomorphic for z and τ in C × H. Let us see if the Π function satisfies
similar properties to those of the ϑ function. First, it is clear that Π(z + 1, τ) =
Π(z, τ) because of the 2πi-periodicity of the exponential function. Now we work out
Π(z + τ, τ). We have

Π(z + τ, τ) =
∞∏

n=1

(1− q2n)(1 + q2n+1e2πiz)(1 + q2n−3e−2πiz)

=

(
1 + q−1e−2πiz

1 + qe2πiz

)
Π(z, τ)

= Π(z, τ)qe−2πiz

= Π(z, τ)e−πiτ−2πiz,

also just like ϑ.

Since ϑ(z, τ) has zeros at the same places as Π(z, τ) (and perhaps some others), the
function ϑ(z, τ)/Π(z, τ) is an entire and bounded (because it is elliptic) function in
z. Therefore it must be independent of z. Therefore we can write

ϑ(z, τ) = c(τ)Π(z, τ). (3)
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We now show that c(τ) = c(4τ) for all τ . If we let z = 1
2

in (3), we have

∞∑
n=−∞

(−1)nqn2

= c(τ)
∞∏

n=1

(1− q2n)(1− q2n−1)(1− q2n−1)

= c(τ)
∞∏

n=1

(1− qn)(1− q2n−1).

Therefore we have

c(τ) =

∑∞
n=−∞(−1)nqn2∏∞

n=1(1− qn)(1− q2n−1)
.

If we now let z = 1
4

in (3), then we have

ϑ

(
1

4
, τ

)
=

∞∑
n=−∞

qn2

in

=
∞∑

n=−∞

(−1)nq4n2

.

We also have

Π

(
1

4
, τ

)
=

∞∏
n=1

(1− q2n)(1 + iq2n−1)(1− iq2n−1)

=
∞∏

n=1

(1− q2n)(1 + q4n−2)

=
∞∏

n=1

(1− q4n)(1− q8n−4).

Thus we have

c(τ) =

∑∞
n=−∞(−1)nq4n2∏∞

n=1(1− q4n)(1− q8n−4)
.

When we equate our two expressions for c(τ), we see that c(τ) = c(4τ). Thus for any
k ∈ Z, we have c(τ) = c(4kτ). Since e4kπiτ goes to 0 as k goes to ∞, we can put this
back into either expression for c(τ) and notice that in the limit we are left with the
term corresponding to n = 0 in the sum, and the denominator goes to 1. Therefore
c(τ) is identically 1. Thus we have proven the following theorem:
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Theorem. For all z ∈ C and τ ∈ H, we have

ϑ(z, τ) =
∞∏

n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz).

The product representation is known as the Jacobi Triple Product. As we well see
later on, it leads quickly to important applications in the theory of integer partitions.
Also, it tells us that the zeros of ϑ(z, τ) are exactly

{(
1
2

+ m
)

+
(

1
2

+ n
)
| m,n ∈ Z

}
.

Now that we know the zeros of ϑ(z, τ), we note that

ς(z, τ) =
∂2

∂z2
(log ϑ(z, t))

is an elliptic function in z with lattice Λ = {m+nτ | m, n ∈ Z}. It is easy to see that
ς has one double pole in C/Λ at z = 1

2
+ τ

2
. Therefore we know that ς(z, τ) can be

written in terms of the Weierstraß ℘ function. As it turns out, we have the identity

ς(z, τ) = ℘

(
z − 1

2
− τ

2

)
+ C,

where C depends on τ but not on z.

3 Modular Properties of the ϑ Function

As we saw in the previous section, the first variable of the ϑ function makes it act like
an elliptic function. The second variable makes it act more like a modular function,
as we shall see in this section. To this end, we shall fix z = 0 and treat the ϑ function
as a function in just one variable, namely τ . We shall prove the following result:

Theorem. For any γ =

[
a b
c d

]
∈ SL2(Z), with ab and cd even, we have

ϑ(0, γ(τ)) = ζ
√

cτ + dϑ(0, τ), (4)

where as usual γ(τ) = aτ+b
cτ+d

and ζ is a particular 8th root of unity.
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Proof. First let us note that the center of SL2(Z), namely ±I, acts trivially on
the ϑ function, so we may assume without loss of generality that c ≥ 0. Therefore
=(cτ + d) ≥ 0, and we select

√
cτ + d so that it has nonnegative real and imaginary

parts. If we wish to choose the other square root, then we can do so, as it will only
change ζ by a factor of −1, so it will still be an 8th root of unity. We now proceed by

induction on |c| + |d|, so we first check the base cases γ =

[
1 b
0 1

]
, where b is even,

and γ =

[
0 −1
1 0

]
. In the first case, we have

ϑ(0, τ + b) = ϑ(0, τ) (5)

just by looking at the definition of ϑ. For the second case, we consider the function
f(x) = e−πx2t and notice that its Fourier transform is

f̂(x) =

∫ ∞

−∞
e−πξ2te−2πiξx dξ =

1√
t
e−πx2/t.

Then by the Poisson Summation Formula we have

∞∑
n=−∞

f(n) =
∞∑

n=−∞

f̂(n),

or
∞∑

n=−∞

e−πn2t =
1√
t

∞∑
n=−∞

e−πn2/t.

Now we notice that this result simply states that

ϑ(0, iτ) =
1√
τ
ϑ

(
0,

i

τ

)
,

or, after a change of variables,

ϑ

(
0,−1

τ

)
= e−iπ/4

√
τϑ(0, τ). (6)

Therefore the base cases hold. For the inductive step, first suppose that |d| > |c|. By
(5), we can replace τ in (4) with τ ± 2 so that (4) for a, b, c, d follows from that of
a, b± 2a, c, d± 2c. Then one of |d± 2c| < |d|, so in this case our inductive step holds.
In the other case, namely |d| < |c|, we replace τ by − 1

τ
and use (6) so that (4) for

a, b, c, d follows from that of b,−a, d,−c after some computations, which reduces us
to the |d| > |c| case. In either case, we have reduced |c| + |d|, so the inductive step
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holds.

In fact, if we are a bit careful about keeping track of the values we are working with,
we can compute ζ exactly. If c is even and d odd, then we have

ζ = i(d−1)/2

(
c

|d|

)
,

where
(

m
n

)
is the Jacobi symbol for quadratic residues, and if c is odd and d even, we

have

ζ = e−πic/4

(
d

c

)
.

In fact, our theorem generalizes to the case in which the first variable is nonzero. The
more general theorem is

ϑ

(
z

cτ + d
,
aτ + b

cτ + d

)
= ζ

√
cτ + deπicz2/(cτ+d)ϑ(z, τ),

where ζ is the same as before. �

To study modular properties of the ϑ function further, it is useful to define four
auxiliary functions:

ϑ00(z, τ) =
∑∞

n=−∞ eπin2τ+2πinz = ϑ(z, τ)

ϑ01(z, τ) =
∑∞

n=−∞ eπin2τ+2πin(z+1/2) = ϑ
(
z + 1

2
, τ
)

ϑ10(z, τ) =
∑∞

n=−∞ eπi(n+1/2)2τ+2πi(n+1/2)z = eπiτ/4+πi(z+1/2)ϑ
(
z + τ

2
, τ
)

ϑ11(z, τ) =
∑∞

n=−∞ eπi(n+1/2)2τ+2πi(n+1/2)(z+1/2) = eπiτ/4+πi(z+1/2)ϑ
(
z + 1+τ

2
, τ
)
.

We notice the following modular properties of the auxiliary ϑ functions:

ϑ00(z, τ + 1) = ϑ01(z, τ) ϑ00

(
z
τ
,− 1

τ

)
=

√
−iτeπiz2/τϑ00(z, τ)

ϑ01(z, τ + 1) = ϑ00(z, τ) ϑ01

(
z
τ
,− 1

τ

)
=

√
−iτeπiz2/τϑ10(z, τ)

ϑ10(z, τ + 1) = eπi/4ϑ10(z, τ) ϑ10

(
z
τ
,− 1

τ

)
=

√
−iτeπiz2/τϑ01(z, τ)

ϑ11(z, τ + 1) = eπi/4ϑ11(z, τ) ϑ11

(
z
τ
,− 1

τ

)
= −

√
−iτeπiz2/τϑ11(z, τ).

We now recall the following definitions:
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Definition. The level N principal congruence subgroup, ΓN , of SL2(Z) is

ΓN =

{[
a b
c d

]
∈ SL2(Z | b, c ≡ 0 (mod N), a, d ≡ 1 (mod N)

}
.

Definition. If k ∈ Z≥0 and N ∈ N, we call a holomorphic function f : H → C a
modular form of weight k and level N if

(a) for all τ ∈ H and

[
a b
c d

]
∈ ΓN ,

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

(b) the Fourier expansion of f has the form

f(τ) =
∞∑

n=0

αne
2πinτ

(i.e. all the α−n are 0).

We can now give a useful result on modular forms, but we shall not prove it here.

Proposition. The functions ϑ2
00(0, τ), ϑ2

01(0, τ), and ϑ2
10(0, τ) are modular forms of

weight 1 and level 4.

This fact allows us to find a holomorphic map from H/Γ4 into complex projective
2-space, which we shall denote by P2. We shall call this map Ψ2 : H/Γ4 → P2, and it
is given by

Ψ2(τ) = (ϑ2
00(0, τ), ϑ2

01(0, τ), ϑ2
10(0, τ))

since none of the ϑij(0, τ) are ever zero. As usual, we want to see what happens when
we let τ 7→ τ + 1 and τ 7→ − 1

τ
. Let Ψ2(τ) = (α, β, γ). Then we have

Ψ2(τ + 1) = (β, α, iγ) Ψ2

(
−1

τ

)
= (α, γ, β).

Therefore the image of Ψ2 is the complex projective cone

α2 = β2 + γ2
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(which is essentially just a nondegenerate conic section in C3) without the points
(1, 0 ± 1), (1,±1, 0), (0, 1,±i). We would like to be able to extend the image of Ψ2

onto the cone. To do this, we note that as =τ →∞,

ϑ00(0, τ) → 1, ϑ01(0, τ) → 1, ϑ10(0, τ) → 0.

Thus Ψ2(τ) → (1, 1, 0). The action of SL2(Z) on (1, 1, 0) will give us the rest of the
missing points. Therefore we consider the compactification of H/Γ4, which we shall
call Ξ. This extends Ψ2 to a holomorphic map for all of Ξ.

Notice that in the mapping properties of the ϑij functions above, we do not use ϑ11

because ϑ11(0, τ) ≡ 0, and so this function is uninteresting. However, the derivative
of the ϑ11 function with respect to z at z = 0 is much more interesting. Let us
abbreviate

∂

∂z
ϑ11(z, τ)

∣∣∣∣
z=0

= ϑ′11(0, τ).

We shall not prove it here, but we have the following result, known as the Jacobi
Derivative Formula:

Proposition. The auxiliary ϑ functions satisfy

ϑ′11(0, τ) = −πϑ00(0, τ)ϑ01(0, τ)ϑ10(0, τ)

for all τ ∈ H.

4 A Result in Combinatorics

By a strong partition of a nonnegative integer n, we mean a k-tuple a = (a1, . . . , ak) ∈
Nk for which a1 > · · · > ak > 0 and a1 + · · · + ak = n. If k is even, we shall call
the strong partition a an even strong partition, and if k is odd, we shall call the
strong partition an odd strong partition. Let α(n) denote the number of even strong
partitions of n and β(n) the number of odd strong partitions. We aim to find a
relationship between α(n) and β(n). To this end, we first notice that the generating
function for α(n)− β(n) is

∞∑
n=0

(α(n)− β(n)) xn =
∞∏

n=1

(1− xn)
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for x ∈ D = {w ∈ C : |w| < 1}. Now select x = e2πiu, where u ∈ H, so that we have

∞∏
n=1

(1− xn) =
∞∏

n=1

(1− e2πinu).

This is a special case of the Jacobi Triple Product by writing q = e3πiu and z = 1
2
+ 1

2
u.

This gives us
∞∏

n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz).

By the Jacobi Triple Product, we therefore have

∞∏
n=1

(1− xn) =
∞∏

n=1

(1− e2πinu)

=
∞∑

n=−∞

(−1)ne3πin2u+πinu

=
∞∑

n=−∞

(−1)ne(3n2+n)πiu

=
∞∑

n=−∞

(−1)nx(3n2+n)/2.

Therefore we have derived the remarkable identity, first proven by Euler, that

α(n)− β(n) =

{
(−1)k n = 3k2+k

2
,

0 otherwise.

5 Results in Number Theory

By virtue of the n2 terms in the exponents in the definition of ϑ(z, τ), we find the
Jacobi ϑ function very useful for solving problems dealing with sums of squares. To
this effect, define a representation function rh : N ∪ {0} → N ∪ {0} by

rh(n) = #{(x1, . . . , xh) ∈ Zh | x2
1 + · · ·+ x2

h = n}.

Using the ϑ function, we will find explicit formulae for r2(n) and r4(n).
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5.1 The Two Squares Theorem

Let us denote by d1(n) the number of divisors d of n with d ≡ 1 (mod 4) and d3(n)
the number of divisors d of n with d ≡ 3 (mod 4). Notice that d1(n) ≥ d3(n). We
shall prove the following result:

Theorem. If n ∈ N, then r2(n) = 4(d1(n)− d3(n)).

Proof. The first thing that we need to notice is that ϑ(0, τ)2 is the generating
function for r2(n). To see, this, we write

ϑ(0, τ)2 =

(
∞∑

m=−∞

qm2

)(
∞∑

n=−∞

qn2

)
=

∑
m,n∈Z

qm2+n2

=
∞∑

n=0

r2(n)qn.

Now we reduce the problem to showing a different identity, namely

ϑ(0, τ)2 = 2
∞∑

n=−∞

1

qn + q−n
. (7)

To see this, note that the right side of (7) is equal to 1 + 4
∑∞

n=1
qn

1+q2n and that

1

1 + q2n
=

1− q2n

1− q4n
,

so that the right side of (7) becomes

1 + 4
∞∑

n=1

(
qn

1− q4n
− q3n

1− q4n

)
.

But this is clearly the generating function for 4(d1(n)− d3(n)) (except for the n = 0
case, which we can ignore anyway since the theorem assumes n ≥ 1). Let us now
write

C(τ) = 2
∞∑

n=1

1

qn + q−n
=

∞∑
n=−∞

1

cos(πnτ)
.
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Therefore we wish to show that ϑ(0, τ)2 = C(τ).

We now show that C(τ) and ϑ(0, τ)2 satisfy the same sorts of properties under trans-
formations of the modular group SL2(Z). By (6), we have

ϑ(0, τ)2 =
i

τ
ϑ

(
−1

τ

)2

,

so now we shall show that the same law property holds for C(τ). To show this, we
use the Poisson Summation Formula on

f(x) =
e−2πiax

cosh(πx/τ)

and set a = 0 to get

∞∑
n=−∞

1

cosh(πn/τ)
=

∞∑
n=−∞

τ

cosh(πnτ)
,

or, equivalently,

C(τ) =
i

τ
C

(
−1

τ

)
,

as desired. Also, we clearly have ϑ(0, τ + 2)2 = ϑ(0, τ)2 and C(τ + 2) = C(τ).
We can also easily show that ϑ(0, τ)2 → 1 and C(τ) → 1 as =τ → ∞ and that
ϑ(0, 1 − 1/τ)2 ∼ 4 τ

i
eπiτ/2 and C(1 − 1/τ) ∼ 4 τ

i
eπiτ/2 as =τ → ∞ with just a few

computations.

In other words, we are looking at these two functions on the fundamental domain
F = {τ ∈ H ∪ R : |<τ | ≤ 1, |τ | ≥ 1}.
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We now have a function f(τ) = C(τ)/ϑ(0, τ)2, defined for τ ∈ H, satisfying f(τ +2) =
f(τ), f(−1/τ) = f(τ), and f(τ) is bounded. We will show that any such function
is constant. Note that the points at ±1 are in F but not in the domain of f . We
call these points cusps. A key step in the proof of the Two Squares Theorem will be
determining the behavior of f near the cusps.

Notice that every point in H can be mapped onto F by some finite sequence of trans-
formations T : τ → τ + 2 and S : τ → − 1

τ
or their inverses, we can understand f

completely by understanding it on F . More precisely, let G = 〈T, S〉, and let G act

on H by writing an element of G as g =

[
a b
c d

]
so that g(τ) = aτ+b

cτ+d
. Notice that G

is a subgroup of SL2(Z). Also, we have =g(τ) = =τ
|cτ+d|2 .

Let us now turn again to proving f ≡ C(τ)/ϑ(0, τ)2 constant. Suppose, on the
contrary, that f were nonconstant, and write f(τ) = g(z), where z = eπiτ so that g is
defined on the punctured disc. Since f is bounded, 0 must be a removable singularity,
and so we set g(0) = lim=τ→∞ f(τ). Then by the Maximum Modulus Principle,

lim
=τ→∞

|f(τ)| < sup
τ∈F

|f(τ)|.
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Now we investigate the behavior of f near the cusps. We need only consider the cusp
at 1 since the two are equivalent. Let us define

Un =

[
1− n n
−n 1 + n

]
,

Tn(τ) = τ + n,

and µ(τ) = 1
1−τ

. Then we have

Un = µ−1Tnµ,

so
UnUm = Un+m

and U−1 = TS. Thus Un ∈ G for each n. Therefore we have f(µ−1Tnµ(τ)) = f(τ),
so F (τ) = f(µ−1(τ)) has period 1, i.e.

F (Tnτ) = F (τ)

for all n ∈ Z. If we now write h(z) = F (τ), where z = e2πiτ , then h has a removable
singularity at 0, so we have

lim
=τ→∞

∣∣∣∣f (1− 1

τ

)∣∣∣∣ < sup
τ∈F

|f(τ)|.

Thus f attains a maximum in H, contradicting the Maximum Modulus Principle.
Thus f must be constant. Since f → 1 at the cusps, f must be identically 1, and the
Two Squares Theorem is proven. �

Corollary. A positive integer can be represented as the sum of two squares if and
only if every prime factor congruent to 3 (mod 4) is raised to an even power.

5.2 The Four Squares Theorem

As in the two squares theorem, we have a simple way to express the number of rep-
resentations of n as the sum of four squares. However, the proof for this theorem is
somewhat more complicated than the two squares theorem and relies on Eisenstein
series. We state it without proof here:
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Theorem. If n ∈ N, then

r4(n) = 8
∑
d|n
4-d

d.
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