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Abstract

This thesis focuses on two aspects of limited rami�cation and is split up into two in-

dependent sections. The �rst section (which comprises the second and third chapters)

is on the distribution of class groups of cyclic cubic �elds. We propose an explanation

for the discrepancy between the observed number of cyclic cubics whose 2-class group

is C2×C2 and the number predicted by the Cohen-Lenstra heuristics, in terms of an

invariant living in a quotient of the Schur multiplier group. We also show that, in

some cases, the de�nition of the invariant can be simpli�ed greatly, and we compute

105 examples.

The second section (which comprises the fourth and �fth chapters) discusses

branched covers of algebraic curves, especially covers of elliptic curves with one branch

point. We produce some techniques that allow us to write down explicit equations for

such maps, and then we give examples of number �elds which arise from such covers.

Finally, we present some possibilities for future works that the author hopes to

pursue.
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Chapter 1

Introduction

This thesis is comprised of work on two projects. The �rst project, discussed in

chapters 2 and 3, is on the Cohen-Lenstra heuristics. The Cohen-Lenstra heuristics

are concerned with the distribution of class groups in number �elds. Papers by Cohen,

Lenstra, and Martinet from the 1980s provide conjectural probability distributions

for the Sylow p-subgroups of class groups of number �elds of certain types. For the

most part, these conjectured distributions match the available data well, but they do

not match the data at a few primes.

In Chapter 2, we give some background on algebraic number theory and the

Cohen-Lenstra heuristics. There is nothing original in this chapter; it is only intended

to give the reader an overview of previous work in the �eld. In Chapter 3, we present

the author's contributions to the subject. In particular, we focus on the case of cyclic

cubic �elds for which the Sylow 2-subgroup of their class groups are C2 × C2, the

�rst case in which the Cohen-Lenstra distribution does not match available data. We

propose an explanation for the failure of the Cohen-Lenstra heuristic in this case,

which is described in Sections 3.4 and 3.5.

Brie�y, what we do is to construct an invariant associated to cyclic cubic �elds

with Sylow 2-subgroup of the class group isomorphic to C2 × C2, valued in C2. We

conjecture that the invariant is equidistributed in these two classes as the discriminant

of the �elds goes to in�nity, and the remainder of Chapter 3 is devoted to giving

numerical evidence to support this conjecture. For the purpose of computation, the

1



2 CHAPTER 1. INTRODUCTION

most useful pieces can be found in Theorem 3.5.4 and Algorithm 3.5.6. From there,

we compute invariants for 105 examples of �elds of this type, and we �nd that the

invariant is roughly equidistributed, but with a small bias in favor of invariant 1 which

appears to drop o� gradually.

The second project, discussed in chapters 4 and 5, is on explicit branched covers

of algebraic curves. This problem has been carefully studied in the case of maps from

P1 to P1, especially in the form of dessins d'enfants and Bely�� maps. We present a

brief overview of known results in this �eld in Chapter 4. There is little new material

in this chapter. The author computed the examples independently, but they are

presumably known, in some form, by many other people.

In Chapter 5, we study explicit branched covers of elliptic curves. Surprisingly

little work has been done in this area in the past, even though it is a natural follow-up

to the study of Bely�� maps and dessins d'enfants. We present several techniques for

constructing these covers.

The most interesting techniques are probably those found in Section 5.3. In this

section, we construct an explicit degree-5 cover of an elliptic curve by a genus-2 curve

rami�ed only above one point. While the main result of the section, Theorem 5.3.1,

is easy to verify once it is handed to us, it is interesting to come up with the equation

of the curve independently. Hence, the techniques that go into coming up with and

conjecturing Theorem 5.3.1 are far more exciting than is the actual statement of the

theorem.

The main theme running through both projects is that of rami�cation. Our work

on the Cohen-Lenstra heuristics involves constructing unrami�ed or minimally ram-

i�ed extensions of number �elds. Our work on covers of algebraic curves involves

constructing covers which are rami�ed only at a few speci�ed points, and with spec-

i�ed rami�cation types. From such covers, it is possible to �nd number �elds which

are rami�ed only at speci�ed sets of primes.

The number �elds we construct give positive answers in certain cases to the fol-

lowing natural extension of the inverse Galois problem: given a �nite group G and a

�nite set S of primes, is it possible to �nd a Galois extension K/Q with Galois group

G so that K/Q is unrami�ed outside S?
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The classical inverse Galois problem asks the following:

Question 1.0.1. Let G be a �nite group. Is there a Galois extension K/Q so that

Gal(K/Q) ∼= G?

In what follows, I shall present a small sample of the work that has been done on

this problem. Note that it is far from being complete.

This problem goes back to the 19th century, and it still remains an open problem,

and one that attracts much attention today. There is no �nite group G for which the

inverse Galois problem for G is known to have a negative answer, but the question

remains unknown for large classes of groups G.

Hilbert attempted this problem by constructing algebraic curves over Q. Such

curves give function �elds K/Q(t). If Gal(K/Q(t)) ∼= G, then Hilbert was able to

construct number �elds over Q with Galois group G. Hilbert was then able to answer

the inverse Galois problem in the a�rmative for all the symmetric and alternating

groups. This is the approach taken in chapter 4, so we will postpone further discussion

of this method until then.

For many other classes of �nite groups G, the inverse Galois problem is known to

have a positive solution. It is easy to show that if G is an abelian group, then we can

�nd a suitable K; we can construct it as a sub�eld of some cyclotomic �eld.

A much deeper result, due to Shafarevich in [�af54], is that the inverse Galois

problem holds for all solvable groups G. Once the solvable groups were taken care of,

focus shifted toward simple groups.

Since Hilbert had already answered the inverse Galois problem for alternating

groups, the next case to look at was that of PSL2(Fp). Shih in [Shi74] was able to

prove the following result:

Theorem 1.0.2 (Shih). Let p be an odd prime for which at least one of 2, 3, and 7

is a quadratic non-residue modulo p. Then PSL2(Fp) occurs as a Galois group over

Q.

Starting with the surprising discovery in 1965 of a new sporadic simple group,

the race was on to �nd more of them; by 1982, the 21 new sporadic groups had
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all been found. Number theorists naturally turned to the sporadic groups as a new

source of special cases of the inverse Galois problem. In the mid-1980s, several papers

including [MZM86], came out constructing the small Mathieu groups M11 and M12

as Galois groups.

At around the same time, Thompson developed a new technique, known as rigidity,

to tackle the inverse Galois problem. In [Tho84], he was able to prove the following

result:

Theorem 1.0.3. Let G be a �nite group, C = (C1, . . . , Cs) a sequence of conjugacy

classes of G, and

AG(C) = {(g1, . . . , gs) ∈ C1 × · · · × Cs : g1 · · · gs = 1}.

Suppose that AG(C) is nonempty. Then G acts on AG(C) by g(g1, . . . , gs) =

(gg1g
−1, . . . , ggsg

−1). If G acts transitively on AG(C), and one (hence every) ele-

ment of AG(C) generates G, then G occurs as a Galois group over Q.

Using this theorem, Thompson showed that the Monster group occurs as a Galois

group over Q.

After much work on sporadic groups, the inverse Galois problem is almost complete

in this case: of the 26 sporadic groups, it remains open only for M23.

More recently, several people have become interested in the question of number

�elds with limited rami�cation (and perhaps given Galois group). This question has

a geometric interpretation in terms of the étale fundamental group. If S is a scheme,

then there is a pro�nite group πét

1 (S) which serves a similar function to the (pro�nite

completion of the) topological fundamental group; that is, it classi�es �nite connected

covers (or covering spaces) of S. If we let πét

A (S) denote the set of abstract �nite groups

which occur as quotients of πét

1 (S), then πét

A measures the Galois groups (or groups of

deck transformations) which can occur for �nite covers.

To use this machinery in the case of Galois groups over Q, we let S =

Spec(Z[1/N ]), where N is the product of the primes at which we allow rami�ca-

tion. The question of whether G occurs as a Galois group over Q of a �eld unrami�ed
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at primes not dividing N is then equivalent to asking whether G ∈ πét

A (Spec(Z[1/N ])).

An interesting discussion along these lines can be found in [Har94].

One concrete question, posed by Gross in [Gro98], is the following:

Question 1.0.4. Let p be a prime. Is there a number �eld K, Galois over Q, un-

rami�ed away from p and ∞, so that Gal(K/Q) is nonsolvable?

This question has now been solved, in the a�rmative. For primes p ≥ 11, this

question was answered by Serre in [Ser73], by Dembélé for p = 2 in [Dem09], by

Dembélé, Greenberg, and Voight for p = 3 and 5 in [DGV11] and by Roberts for

p = 5 with an explicit polynomial in [Rob11]. Very recently, Dieulefait in [Die12]

solved this question for p = 7, �nally answering the question completely. These

papers used modular forms to construct the relevant �elds.

The general question, of which pairs (G, S) of a Galois group and a set of rami�ed

primes, can occur in a number �eld, is still very much open. It is this question that

inspires the work done in this thesis, and to which I hope to be able to contribute.

But at the moment, there is still much to be done before I will be able to construct

many new examples.



Chapter 2

An Introduction to the

Cohen-Lenstra Heuristics

2.1 Introduction

Before we begin our discussion of the Cohen-Lenstra heuristics, it will be helpful to

recall some basic de�nitions and results from algebraic number theory and class �eld

theory.

De�nition 2.1.1. Let K be a number �eld with ring of integers oK . A fractional

ideal of K is a nonzero �nitely generated oK-submodule of K. Let I(K) denote the

set of fractional ideals of K.

The fractional ideals of K form a group under multiplication. The identity element

is the fractional ideal oK itself.

De�nition 2.1.2. A principal fractional ideal of K is a fractional ideal of the form

aoK , for some a ∈ K×. Let P (K) denote the set of principal fractional ideals.

The principal fractional ideals form a subgroup of the group of fractional ideals.

De�nition 2.1.3. The class group of K is the quotient Cl(K) = I(K)/P (K).

One of the most important theorems in basic algebraic number theory is the

following:

6
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Theorem 2.1.4. If K is a number �eld, then Cl(K) is a �nite group.

See �17, page 71, of [CF86] for a proof, or the discussion in �IV.3 of [FT93] for an

e�ective version, providing a bound on its size.

De�nition 2.1.5. The class number h(K) is de�ned to be the order of Cl(K).

The class group was �rst studied in connection with Fermat's Last Theorem, by

Ernst Kummer in the middle of the 19th century, based on a failed attempt by Gabriel

Lamé to give a proof of this celebrated then-conjecture. The idea was as follows. Let

p ≥ 3 be a prime. We wish to show that xp + yp = zp has no solutions in positive

integers. So, we try to factor the left side as

p−1∏
i=0

(x + ζ iy),

where ζ is a primitive pth root of unity. Since the right side is a pth power, if all the

factors in the product are pairwise relatively prime, then each one of them must be

a pth power as well. One can then attempt to show that this is impossible. A careful

exposition of this approach can be found in [Was97].

However, this approach implicitly assumes that Z[ζ] is a unique factorization do-

main, and this is false in general. (In fact, it is false for all primes p ≥ 23.)

It it not too di�cult to show that K has class number 1 exactly when oK is a

unique factorization domain. Hence, the class number is a measure of the failure of

oK to be a unique factorization domain. More concretely, if we have some element

x ∈ oK with nonunique factorization, we can construct a nonprincipal ideal.

Example. Let K = Q(
√
−5), so that oK = Z[

√
−5]. Then K has class number 2.

We can give an explicit element of oK which has nonunique factorization:

6 = 2× 3 = (1 +
√
−5)(1−

√
−5).

We can use this factorization to give us an example of a nonprincipal ideal, namely

(2, 1 +
√
−5). (Any other similar pair of factors would also do. Any two such pairs

provide ideals in the same ideal class, however.)
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It will also be helpful for this chapter to recall various facts about rami�cation

in number �elds. We begin by recalling the following theorem, known as the efg

Theorem:

Theorem 2.1.6 (efg Theorem). Let L/K be an extension of number �elds of degree

n, and let p ⊂ oK be a prime ideal. Suppose poL factors in oL as

poL =

g∏
i=1

Pei
i ,

where the Pi are distinct primes in oL. Let fi = [oL/Pi : oK/p]. Then

n =

g∑
i=1

eifi.

If, furthermore, L/K is a Galois extension, then all the ei's and fi's are equal, so we

write these common values as e and f , respectively. We then have

n = efg.

This is Theorem 20 in [FT93]. A proof can be found there.

An important invariant associated to a number �eld is its discriminant, de�ned

as follows:

De�nition 2.1.7. Let K be a number �eld with ring of integers oK . Let {αi} be an
integral basis for K, i.e.,

oK =
⊕

i

Zαi

as a Z-module.

1. If α ∈ K, then we de�ne the trace of α to be the trace of the multiplication by

α map with respect to the basis {αi} of K. (Of course, this is independent of

choice of basis.) We denote this number by Tr(α).
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2. The discriminant of K is de�ned to be

disc(K) = det(Tr(αiαj))i,j.

We can also de�ne the discriminant of an extension of number �elds L/K, but

the situation is a little bit more subtle, since oL need not be a free oK-module. To

remedy this, we de�ne the discriminant of L/K to be the ideal of oK de�ned as

follows: suppose [L : K] = n, and suppose that A = {α1, . . . , αn} ⊂ oL generates a

�nite-index free oK-subalgebra of oL. Let discA(L/K) = det(Tr(αiαj))i,j. Then the

discriminant ideal of L/K is the ideal of oK generated by all the discA(L/K)'s.

De�nition 2.1.8. Let L/K be an extension of number �elds, and let p ⊂ oK be a

prime ideal. We say that p is rami�ed in L if, in the factorization given by the efg

Theorem, some ei > 1.

It turns out that, for any extension, there are only �nitely many rami�ed primes.

These are exactly the primes dividing the discriminant of L/K.

It is also possible to talk about a �eld being rami�ed or unrami�ed at ∞.

De�nition 2.1.9. An extension L/K of number �elds of degree n is said to be un-

rami�ed at∞ if, whenever ι : K → R is an embedding, then there exist n embeddings

ι̃ : L → R whose restriction to K is equal to ι. Otherwise, the extension is said to be

rami�ed at ∞.

In particular, if K is totally real, then L/K is unrami�ed at ∞ if and only if L is

also totally real.

One of the most remarkable achievements of twentieth century mathematics was

the development of class �eld theory. Global class �eld theory relates abelian exten-

sions of number �elds (and function �elds) to certain generalizations of class groups.

We brie�y describe some of the key results in class �eld theory now.

Theorem 2.1.10. Let K be a number �eld. Then there exists a unique (up to iso-

morphism) maximal Galois extension L/K which is unrami�ed at all prime ideals

p as well as at ∞, and so that Gal(L/K) is abelian. Furthermore, in this case,

Gal(L/K) ∼= Cl(K).
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See page 61 of [Chi09] for more information and generalizations of this theorem.

Example. 1. If K = Q, then its class group is trivial, so there are no unrami�ed

abelian extensions of Q.

2. If K = Q(
√
−5), then Cl(K) = C2, so there is a unique unrami�ed quadratic

extension of K. This extension is Q(
√
−5,

√
−1).

3. If K = Q(
√
−23), then Cl(K) = C3, so there is a unique unrami�ed cyclic cubic

extension of K. This extension is Q(
√
−23, α), where α is a root of x3 − x− 1.

This extension L is known as the Hilbert class �eld of K and is frequently denoted

by H(K). It is perhaps worth noting that the isomorphism given in the theorem is

not merely an abstract isomorphism; rather, by using some powerful theorems in class

�eld theory such as (a very weak version of) the Chebotarev density theorem, we can

describe the map quite explicitly. The map in question is known as the Artin map.

We can also construct variants of the Hilbert class �eld. For instance, the maximal

Galois unrami�ed abelian extension of K for which the Galois group is abelian and

for which [L : K] is a pth power corresponds via the Artin map in class �eld theory

(or simply by Galois theory) to the Sylow p-subgroup of Cl(K).

There is also a variant of the class group known as the narrow class group, and it

will be used later in this section. Let P+(K) denote the group of principal fractional

ideals (a) of K for which a is totally positive, i.e., so that ι(a) > 0 for every embedding

ι : K ↪→ R. Let Cl+(K) = I(K)/P+(K). We call Cl+(K) the narrow class group of

K.

As we saw above, there is a �eld (the Hilbert class �eld) associated to the class

group of a number �eld. Similarly, there is a �eld, called the narrow class �eld,

associated to the narrow class group. The narrow class �eld of K is the maximal

abelian extension of K that is unrami�ed at all �nite primes.

Example. Let K = Q(
√

3). Then Cl(K) = 1, and Cl+(K) = C2. Hence, there exists

a quadratic extension L/K which is unrami�ed at all �nite places, but is rami�ed at

in�nity. This �eld is L = Q(
√

3,
√
−1).
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2.2 The Cohen-Lenstra Heuristics

Cohen and Lenstra in [CL84] were interested in studying the distribution of class

groups of quadratic �elds, and perhaps, abelian extensions of Q more generally. These

heuristics were extended by Cohen and Martinet in [CM87] and [CM90] in 1987 and

1990 to �elds of more general type.

Since class groups are �nite abelian groups, we can attempt to understand them

by understanding their p-Sylow subgroups. Assuming that the distributions of the

p-Sylow subgroups are independent for di�erent p, we can then patch together the

distribution of class groups from the distribution of the p-Sylow subgroups for all

p. (The independence of distributions at each prime is conjectural, but it is well-

supported by numerical data.)

Therefore, we will restrict ourselves to looking at the distribution of the p-Sylow

subgroups of the class groups of number �elds. Let K be a number �eld. Then we

let Clp(K) denote the p-Sylow subgroup of Cl(K), and we let hp(K) denote its order.

In the case of quadratic �elds, Cohen and Lenstra made the following conjecture:

Conjecture 2.2.1 (Cohen-Lenstra). Let p be an odd prime. Let D±(X) denote the

set of real (respectively imaginary) quadratic �elds K with | disc(K)| < X. Let A be

a �nite abelian p-group. Then

λ±(A) = lim
X→∞

#{K ∈ D±(X) : Clp(K) ∼= A}
#D±(X)

exists, and we have

λ+(A) = c+|Aut(A)|−1 × |A|−1, λ−(A) = c−|Aut(A)|−1

for certain explicit constants c+ and c−, which are independent of A.

The statement of this conjecture suggests many further questions. One such ques-

tion is why we need to restrict to the case of of an odd prime p. The reason is that the

2-torsion in the class group is controlled by a di�erent phenomenon, namely genus

theory. In the general case, genus theory is quite involved (see [Frö83] for a complete
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treatment), but in the case of 2-torsion in a quadratic �eld, it is readily understood:

if K is a quadratic �eld and r is the number of primes dividing disc(K), then the

2-torsion of Cl(K) is isomorphic to Cr−1
2 or Cr−2

2 (see [FT93], Corollary 1 to Theorem

39, for a more precise statement and a proof). In particular, the 2-torsion in quadratic

�elds is rarely equal to 0 and can easily become arbitrarily large.

Another question that is likely to arise is what sort of heuristic evidence we have

that suggests such a result might be true, or even a reasonable guess. One answer,

supported by analogies in other areas of mathematics (especially the theory of stacks

in algebraic geometry) is that objects in general are best and most uniformly treated

when we take a quotient by the automorphism group of each object. An instance of

this phenomenon that will become increasingly relevant in later chapters is that of

elliptic curves. Most elliptic curves (over the complex numbers) have automorphism

group C2, but those with j-invariant 0 or 1728 have larger automorphism groups. The

moduli stack of elliptic curves is then the quotient of the coarse moduli space A1 of

elliptic curves by automorphism groups, and this is the best object to use to study

families of elliptic curves, since there are unexpected phenomena that occur for these

j-invariants.

It is also worth at this point giving a plausibility argument for this conjecture,

which comes from a result of Friedman and Washington in [FW89]. Suppose we

have a (large) collection of ideals I1, . . . , In in a number �eld K. Then their images in

Cl(K) satisfy various relations. In fact, we expect them to satisfy n or n+1 relations,

depending on whether K is imaginary quadratic or real quadratic, respectively. As-

suming we have chosen enough ideals to generate the class group, the class group will

then be the cokernel of this matrix, considered as a map of free Z-modules. Hence,

the class group should be well-modeled by the cokernel of a random matrix of the

right size.

Unfortunately, this approach does not make any sense as stated, since there is no

obvious measure to put on these matrices. To �x this problem, we restrict to the

p-power torsion and consider the matrices to have entries in Zp. Now, if we assume

that the entries are distributed identically and independently according to the Haar

measure on Zp, then we have a well-de�ned distribution on their cokernels. Friedman
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and Washington showed that, as n → ∞, a limiting distribution exists and is equal

to the distribution in the above conjecture.

Here, it is necessary to try to justify the di�erence between the imaginary

quadratic and real quadratic cases, but it is clear from even the most casual glance at

a table of class numbers that imaginary and real quadratic �elds behave very di�er-

ently. Indeed, there are exactly nine imaginary quadratic �elds with class number one,

while there appear to be in�nitely many (and in fact, around 75% of) real quadratic

�elds with class number one. It is hard to give very compelling reasons to believe

that the rank of the unit group should be a determining factor in the distribution

of class groups, but let us try to demonstrate that at least there ought to be some

connection.

One place in which it becomes clear that there is a serious di�erence between real

and imaginary quadratic �elds is in the analytic class number formula. If K is any

number �eld, and ζK is the Dedekind ζ function for K, then we have the formula

ζK(0) = −hR

w
,

where h is the class number, R is the regulator, and w is the number of roots of unity

in K. For all but �nitely many quadratic �elds, w = 2, so that term is not so critical.

However, in the case of an imaginary quadratic �eld, R = 1, while for real quadratic

�elds, R depends on the fundamental unit of K. We should think of hR as being one

block from an analytic point of view; it is hard to write down an analytic expression

that separates h from R. If we were to study the distribution of hR in place of h, then

we should expect much greater similarities between the real quadratic and imaginary

quadratic situations.

Another place the unit group comes into consideration in the study of class groups

is in the construction of class groups of quadratic �elds in terms of binary quadratic

forms. For imaginary quadratic �elds K with discriminant −∆, the class group is

exactly the group of reduced binary quadratic forms with discriminant −∆. For real

quadratic �elds, the analogous construction only gives us the narrow class group,

which is either equal to the class group or else twice as large (in the case of real
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quadratic �elds).

In order to remedy this, we might think of the class group of a real quadratic �eld

as being the narrow class group modulo the cyclic subgroup generated by a uniformly

chosen element. (This is far from being actually true, but it is reasonable intuition.)

Quotienting out by one element of a group modeled after the narrow class group

should correspond to allowing one extra relation in the matrix. This should be our

intuition for why the class group of a real quadratic �eld should be modeled by n

generators and n + 1 relations.

Of course, we need not lose interest in class groups as soon as we step beyond

quadratic �elds: we could ask the same question for �elds of other types. Furthermore,

in this case, the 2-power torsion will not necessarily be governed by genus theory, so

we might also allow p to be 2. So, we could make the following guess, by attempting to

apply the Cohen-Lenstra heuristics to situations for which we have no a priori reason

for believing that they are appropriate, apart from a random matrix-type argument

or a fuzzy argument of the type given just above.

Heuristic 2.2.2 (Proto-Cohen-Lenstra Heuristics). Let n be a positive integer, and

let G be a transitive permutation group on a set of size n. Furthermore, let (r1, r2) be

a signature, with r1 + 2r2 = n. Let D(X) be the set of number �elds K the absolute

value of whose discriminant is less than X, and so that the Galois group Gal(K]/Q)

of the Galois closure of K is isomorphic to G, and K has r1 real embeddings and r2

pairs of complex conjugate embeddings. Finally, let p be a prime not dividing |G| and
let A be a �nite abelian p-group. Then

lim
X→∞

#{K ∈ D(X) : Clp(K) ∼= A}
#D(X)

exists, and is inversely proportional to |Aut(A)| × |A|r1+r2−1.

However, the proto-Cohen-Lenstra heuristics sometimes fail for silly reasons.

Here's an example:

Lemma 2.2.3. Let n = 3 and G = C3 in the above heuristics. If p ≡ 2 (mod 3),

then the p-rank of K, rp(K) := dimFp(Cl(K)/p Cl(K)), is even for all such K.
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Proof. The Galois group C3 = {1, σ, σ2} of K over Q acts on Clp(K). The number

of ideal classes of order p is prp(K) − 1, which is congruent to 0 (mod 3) if and only

if rp(K) is even. Hence, if rp(K) is odd, then there must be a nontrivial p-torsion

ideal class C �xed by the Galois action. In particular, there's a nonprincipal ideal

a ∈ C of order p so that a, aσ, and aσ2
are all in the same ideal class. We now

show that their product a1+σ+σ2
is equal to the principal ideal (Na)oK . For any

a ∈ a, Na = a1+σ+σ2 ∈ a1+σ+σ2
, and the Na generate (Na)oK as an oK-module, so

(Na)oK ⊂ a1+σ+σ2
. Now, the norms of both ideals a1+σ+σ2

and (Na)oK are (Na)3.

Hence, they are equal. Furthermore, (Na)oK is principal, since it is generated by the

element Na. Hence C3 = 1 in Clp(K). But this is impossible, as 3 - p. �

We can patch the proto-Cohen-Lenstra heuristics by excluding those A that are

ruled out by this Lemma and related ones. Furthermore, as the proof of the lemma

hints, for those A that are allowable, we need the automorphisms to be compatible

with the Galois action, in the case that K is actually a Galois number �eld. More

precisely, if G = C`, then we need A to be a Z[ζ`]-module. This suggests the following

re�nement of the proto-Cohen-Lenstra heuristics, at least in the case where n = ` is

a prime, and G = C`:

Heuristic 2.2.4 (Re�ned Cohen-Lenstra Heuristics). Let ` be an odd prime, and let

G = C`. Let D(X) be the set of C` number �elds with absolute discriminant less than

X. (Such �elds are necessarily totally real.) Also, let p be a prime di�erent from `

and A an abelian p-group with the structure of a Z[ζ`]-module. Then

lim
X→∞

#{K ∈ D(X) : Clp(K) ∼= A}
#D(X)

exists, and is inversely proportional to |AutZ[ζ`](A)| × |A|`−1.

Another, more modern and sometimes cleaner, way to interpret the re�ned Cohen-

Lenstra heuristics is based on the following idea from probability theory. Let µ be a

probability distribution on R. De�ne the kth moment of µ to be

ak =

∫ ∞

−∞
xk dµ.
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From knowing the sequence of moments a1, a2, . . ., it is possible to reconstruct µ under

fairly mild hypotheses. To be more precise, de�ne the moment generating function

to be the power series

A(x) =
∞∑

k=1

ak
xk

k!
.

Then assuming that A(x) has positive radius of convergence, µ is the only probability

distribution having moment generating function A(x). (See [Bil95], Chapter 30, for

a proof.)

In the context at hand, we can de�ne an analogue of a moment for a probability

distribution f of �nite abelian p-groups as follows. Fix a �nite abelian p-group A, and

look at the expected number of surjections (in whichever category is appropriate) from

an f -random �nite abelian p-group X to A. This number behaves as the �Ath moment

of X.� Just as in the situation for classical moments of probability distributions, these

Ath moments of X determine f , assuming that f is fairly well-behaved.

We now put this in proper context. If A is a �nite abelian p-group that also has

the structure of a Z[ζ`]-module, then we would like to understand the number

E(# SurjZ[ζ`]
(Cl(K), A)).

Here Surj is the set of surjective maps, and E denotes the expected value. Let's look

at the case of n = 3 and G = C3. Then the re�ned Cohen-Lenstra heuristics are

equivalent to

lim
X→∞

1

#D(X)

∑
K∈D(X)

prp(K) =


(
1 + 1

p

)2

p ≡ 1 (mod 3),

1 + 1
p2 p ≡ 2 (mod 3).

(2.2.1)

In the case when A = Cp (if p ≡ 1 (mod 3)) or A = Cp × Cp (if p ≡ 2 (mod 3)),

then

E(# SurjZ[ζ3](Cl(K), A)) = lim
X→∞

1

#D(X)

∑
K∈D(X)

(prp(K) − 1).

So, in particular, if p = 2, we'd expect the number of surjections from the class group

of a random C3 �eld to C2 × C2 to be 1/4. As we shall see shortly, however, this
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appears not to be the case.

2.3 Malle's computations

Notation. We use the following notation: for q, k ∈ N, let

(q)k =
k∏

i=1

(1− q−1), (q)∞ =
∞∏
i=1

(1− q−1).

After performing many tests, Malle proposed a list of cases in which the Cohen-

Lenstra heuristics are expected to fail. In particular, when p = 2, they should always

fail. In the case of C3 �elds, the Cohen-Lenstra heuristics predict that the Sylow

2-subgroup of the class group should be isomorphic to C2 × C2 with probability

1

12

(4)∞
(4)1

≈ .0765.

Instead, in his sample of over 16 million �elds, he �nds that the actual probability

is closer to .13, nearly twice as large as expected. Similarly, equation (2.2.1) does

not seem to hold when p = 2: equation (2.2.1) predicts that the average size of the

maximal elementary abelian 2-subgroup of Cl(K) be 5
4
, but Malle's computations

suggest that the correct number is 3
2
.

In terms of expected number of surjections, it appears that

E(# SurjZ[ζ3](Cl(K), C2 × C2)) = 1/2, (2.3.1)

rather than 1/4, as mentioned in the previous section.

In general, Malle expects the Cohen-Lenstra heuristics to fail at the prime p when

the ground �eld contains pth roots of unity. In this case, he expects that if A is

a nontrivial abelian p-group, then Clp(K) ∼= A more often than the Cohen-Lenstra

heuristics predict.

Remark 2.3.1. For C3 �elds, the Cohen-Lenstra prediction also fails for p = 3, since

the 3-torsion in the class group is governed by genus theory, just as in the case of
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p = 2 for quadratic �elds. More generally, the Cohen-Lenstra predictions at a prime p

do not hold for �elds with Galois group G if p divides |G| because of genus theory. In
this thesis, we are not especially interested in the failure for that reason, since genus

theory is well-understood. Thus, we will only be concerned with deviations due to

the existence of pth roots of unity.

In the case of quadratic �elds, it is still interesting to look at the 4-ranks of

class groups; that is, the maximum value of r so that Cl(K) contains a subgroup

isomorphic to Cr
4 . These are no longer controlled by genus theory, except that we

have an obvious bound for the 4-rank in that it cannot exceed the 2-rank. In [Ger89],

Gerth investigates the following situation. Let F be an imaginary quadratic �eld

with odd class group. He then wishes to determine the distribution of 4-ranks of class

groups of quadratic extensions K of F , ordered by the absolute norm of the relative

discriminant of K over F . He proves the following theorem:

Theorem 2.3.2 (Gerth, [Ger89]). 1. If F 6= Q(
√
−1), then the probability that

the 4-rank of Cl(K) is equal to r is

(2)∞
2j(j+1)(2)j(2)j+1

.

2. If F = Q(
√
−1), then the probability that the 4-rank of Cl(K) is equal to r is

3

2(j+1)(j+2)/2(4)∞
.

Of particular importance is the di�erence in behavior when F contains a fourth

root of unity and when F does not contain a fourth root of unity. Inspired by this and

related results, Malle conjectured that deviations from the Cohen-Lenstra heuristics

occur when the ground �eld contains roots of unity.



Chapter 3

The Cohen-Lenstra Heuristics and

Roots of Unity

3.1 A Concise Guide to the Chapter

The goal of this chapter is to explain the discrepancy in (2.3.1): the class group of a

C3 �eld tends to contain more copies of C2 × C2 than the Cohen-Lenstra heuristics

predict. In this chapter, we will not work directly with C3 �elds, but rather with

quartic A4 �elds, which will be slightly more convenient. However, this is only a

minor distinction as there is a natural bijection between totally real A4 �elds and C3

�elds K with a Galois-equivariant surjection from Cl(K) to C2 × C2.

The chapter begins with some preliminary material in �3.2 on the Schur multiplier

and a variant of it called the reduced Schur multiplier. After that, we present some

background material on lifting invariants in �3.3. This material is motivational: we

do not use the results of this section in our new results or computations. However,

much of what we do is heavily inspired by the results of �3.3. Thus, we include this

section in order to make future constructions not seem like a bolt from the blue.

The new material begins in �3.4. Here we present an invariant associated to an

A4 �eld which is expected to explain the discrepancy in (2.3.1). In �3.5, we present

an algorithm to compute the invariant, and we show that in certain circumstances,

the invariant has a simple interpretation as the parity of the class group of a certain

19
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�eld. In �3.6, we perform an explicit computation of the invariant for the smallest

A4 �eld. Finally, we end this chapter with Table 3.1, which summarizes the data

collected from 105 �elds.

3.2 Schur Multipliers and Variants

Our proposed correction to the Cohen-Lenstra heuristics in the presence of roots of

unity can be described in terms of the reduced Schur multiplier. We �rst recall the

de�nition of the Schur multiplier, then move on to the reduced Schur multiplier.

De�nition 3.2.1. Let G be a group.

1. The Schur multiplier group of G is de�ned to be the second homology group

H2(G, Z).

2. A central extension of G is a short exact sequence

0 → A → G̃ → G → 1,

where A is an abelian group, and A is contained in the center of G̃.

3. A stem extension of G is a central extension

0 → A → G̃ → G → 1

so that A is contained in the intersection of the center of G̃ and the derived

subgroup of G̃.

If G is �nite, there is a stem extension G̃ of maximal order; in fact, there may

be more than one of maximal order, and such G̃ need not be isomorphic. However,

as G̃ varies over maximal stem extensions, the corresponding A are all isomorphic,

and they are isomorphic to the Schur multiplier group H2(G, Z). If, in addition, G

is a perfect group (i.e., G = [G, G] is its own commutator subgroup), then there is a

unique such group G̃.
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Suppose G is a �nite group. Then H2(G, Z) is a �nite group all of whose elements

have order dividing the order of G. Also, for a prime p, the Sylow p-subgroup of

H2(G, Z) is trivial if the Sylow p-subgroup of G is cyclic. For convenience, we provide

a few examples of Schur multiplier groups.

Proposition 3.2.2. 1. (Schur 1907, also Corollary 2.2.12 in [Kar87]) Let G be

the �nite abelian group

G ∼= Cn1 × Cn2 × · · · × Cnk
,

with ni+1 | ni for 1 ≤ i ≤ k − 1. Let C
(m)
n denote the direct product of m copies

of Cn. Then

H2(G, Z) ∼= Cn2 × C(2)
n3
× · · · × C(k−1)

nk
.

2. Let G = C2 × C2. Then H2(G, Z) ∼= C2. There are two stem extensions of G:

0 → C2 → D8 → C2 × C2 → 0

and

0 → C2 → Q8 → C2 × C2 → 0. (3.2.1)

3. Let G = An be the alternating group on n letters. Then

H2(G, Z) =


1 n ≤ 3,

C2 n ≥ 4 and n 6= 6, 7,

C6 n = 6, 7.

If n = 4, then we have A4
∼= PSL2(F3), and the unique stem extension of A4 is

0 → C2 → SL2(F3) → A4 → 1. (3.2.2)

Furthermore, the sequence (3.2.1) is the sequence of Sylow 2-subgroups of

(3.2.2). If n = 5, we have A5
∼= PSL2(F5), and the unique stem extension
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of A5 is

0 → C2 → SL2(F5) → A5 → 1.

We write Ãn for the maximal stem extension of An.

4. Let G = Sn be the symmetric group on n letters. Then

H2(G, Z) =

1 n ≤ 3,

C2 n ≥ 4.

For n ≥ 4, there are two nonisomorphic double covers of Sn.

In fact, what we really need is not the full Schur multiplier group, but a certain

quotient of it, associated to a certain union of conjugacy classes of G. To this end,

�x a union of conjugacy classes c ⊂ G. Let

0 → H2(G, Z) → G̃ → G → 1

be a Schur cover. Suppose x ∈ c and y ∈ G commute. Lift x and y to x̃ and ỹ,

respectively, in G̃. (This can be done in multiple ways; choose one arbitrarily.) Then

the commutator [x̃, ỹ] eG lies in H2(G, Z), and this element is independent of the choice

of lifts. Call this element 〈x, y〉 eG. Let Qc denote the subgroup of H2(G, Z) generated

by all the 〈x, y〉 eG's.
De�nition 3.2.3. The reduced Schur multiplier of a pair (G, c) is the quotient

H2(G, c, Z) = H2(G, Z)/Qc.

A reduced Schur cover of (G, c) is the quotient G̃c = G̃/Qc.

A reduced Schur cover is a largest stem extension of G so that c lifts bijectively

to a union of conjugacy classes c̃ ⊂ G̃c.

Remark 3.2.4. We will tend to be slightly sloppy with our terminology when refer-

ring to reduced Schur covers. In the future, when we refer to a reduced Schur cover
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G̃c, we shall assume that it comes packaged with a union of conjugacy classes c̃ ⊂ G̃c

which bijects onto c, even when no explicit choice of c̃ is provided.

Example. Suppose G = A5. If c is the conjugacy class of 3-cycles, then H2(G, c, Z) ∼=
C2, and the corresponding extension is

0 → C2 → Ã5 → A5 → 1.

However, if c is the conjugacy class of (12)(34), then H2(G, c, Z) is trivial. To see this,

it su�ces to show that the two lifts of an element of order 2 in A5 to Ã5 are conjugate

in Ã5. Since A5
∼= PSL2 F5 and Ã5

∼= SL2 F5, it su�ces to work with matrices. Let

g ∈ PSL2 F5 be the image of the matrix(
2 0

0 −2

)
.

Its two lifts to SL2 F5 are

g̃1 =

(
2 0

0 −2

)
, g̃2 =

(
−2 0

0 2

)
.

In SL2 F5, g̃1 and g̃2 are conjugate, since if

s =

(
0 −1

1 0

)
,

then

s−1g̃1s = g̃2.

3.3 Lifting Invariants for Hurwitz Spaces

This section is provided for motivation, as �3.4 would not seem to be very natural

without the knowledge of the material in this section. However, it is not logically

necessary to read this section in order to understand the new results.
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In this section, we describe lifting invariants for branched covers of the disk. That

is, we describe a combinatorial algorithm to determine whether or not two covers are

in the same connected component of the space of all such covers. Before we do that,

we need to recall the de�nition of a monodromy group of a �nite cover.

De�nition 3.3.1. Let X be a connected topological space, and let f : Y → X be a

(not necessarily connected) �nite cover of X, of degree d. Let x ∈ X be a basepoint,

and let f−1(x) = {y1, . . . , yd} ⊂ Y . Suppose γ is a loop in X based at x. For each

i with 1 ≤ i ≤ d, there is a unique lift γ̃i of γ with γ̃i(0) = yi. We now de�ne a

permutation πγ ∈ Sd to be the permutation which sends i to j, where γ̃i(1) = yj. The

map γ 7→ πγ induces a map π1(X, x) → Sd, called the monodromy representation. Its

image is called the monodromy group of f .

We recall some information about Hurwitz spaces, all of which can be found in

greater detail in [EVW12].

Pick a basepoint x on the boundary of the disk, and let Confn denote the con-

�guration space of n distinct unlabeled points in the interior of the disk. We are

interested in branched covers of the disk with n branch points. We say two such

covers f1 : Y1 → D and f2 : Y2 → D are isomorphic if there exists a homeomorphism

g : Y1 → Y2 so that the triangle

Y1
g //

f1   @
@@

@@
@@

Y2

f2~~~~
~~

~~
~

D

commutes. In particular, f1 and f2 must have the same branch points.

Fix a positive integer d and a �nite group G ≤ Sd, and let HurG,n denote the

moduli space of branched covers of the disk with n branch points and monodromy

group a subgroup of G. Equivalently, a point in HurG,n is a point {P1, . . . , Pn} ∈
Confn, together with a homomorphism

ρ : π1(D
2 − {P1, . . . , Pn}, x) → G. (3.3.1)
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There are some variants of HurG,n which will also be important for us.

• Let CHurG,n be the subspace of HurG,n consisting of the connected covers.

Equivalently, a cover is connected if and only if the map ρ in (3.3.1) is sur-

jective.

• If c ⊂ G is a union of conjugacy classes of G, let Hurc
G,n be the subspace of

HurG,n consisting of covers for which all the local monodromies around the Pi

lie in c. De�ne CHurc
G,n similarly.

• Let Zc/G be the free abelian group on the conjugacy classes inside c. If m ∈ Zc/G

is a multi-index, we let Hurc
G,m be the subspace of Hurc

G,|m| consisting of covers

for which there are mi branch points with local monodromy inside ci for each

conjugacy class ci ⊂ c.

• We de�ne other variants similarly.

In this section, we will be interested in understanding the connected components of

Hurc
G,n. Note that, since a cover is determined up to isomorphism by its monodromy

at the branch points, we can express π0 HurG,n and π0 Hurc
G,n in terms of quotients of

Gn and cn, respectively. To do this, we need to de�ne the braid group and its action

on Gn (and cn).

De�nition 3.3.2. • Let n ≥ 2 be an integer. The braid group Brn on n strands is

the group generated by elements σ1, . . . , σn−1, subject to the relations [σi, σj] =

1 if |i− j| ≥ 2, and

σiσi+1σi = σi+1σiσi+1

for 1 ≤ i ≤ n− 2.

• There is an action of the braid group Brn on Gn and cn. If σi is the ith generator

in the presentation above, then its action on (g1, . . . , gn) is given by

σi(g1, . . . , gn) = (g1, . . . , gi−1, gigi+1g
−1
i , gi, . . . , gn).
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Figure 3.1: This denotes σ1 ∈ Br4, where the strands are labeled 1 through 4, from
bottom to top, and are considered as going from left to right.

The term �braid group� comes from making braids with n strands. We show a

sample braid on four strands in Figure 3.1.

With this de�nition, we can make a precise statement equating connected com-

ponents of Hurwitz space to n-tuples of elements of G: we have

π0 HurG,n
∼= Gn/ Brn, π0 Hurc

G,n
∼= cn/ Brn .

The maps π0 HurG,n → Gn/ Brn and π0 Hurc
G,n → cn/ Brn send a cover to the n-tuple

of local monodromies at the branch points.

The key result is the following, based on unpublished work of Conway and Parker.

Theorem 3.3.3 (Conway-Parker). There exists a constant N , depending on G, c,

and n, so that if mi ≥ N for all i, then

π0 CHurc
G,m

∼→ G̃c.

The map in the theorem has a very concrete, combinatorial description. Let

(g1, . . . , gn) represent a class in π0 CHurc
G,m. Lift g1, . . . , gn ∈ c to g̃1, . . . , g̃n ∈ c̃.

Then the lifting invariant associated to (g1, . . . , gn) is the product
∏

g̃i ∈ G̃c.

We can give a similar description of the connected components of the space of

branched covers of P1. The only di�erence is that the product of all the gi's must be

equal to 1, so we instead get a map from the connected components to H2(G, c, Z).

Example. Let G = PSL2 F11 ≤ S12, and let c be the set of elements of order 3, 5,

and 11. Then H2(G, c, Z) = C2 = {±1}, G̃c = SL2 F11, and c̃ is the set of elements of
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order 3, 5, and 11 inside SL2 F11. Consider two covers given by the following triples

of elements of c: (g1, g2, g3) and (h1, h2, h3), where

g1 =

(
−1 4

−1 3

)
g2 =

(
−1 1

−1 0

)
g3 =

(
−3 −1

−2 −1

)

h1 =

(
−1 4

−1 3

)
h2 =

(
−1 3

−4 0

)
h3 =

(
−4 −3

0 −3

)

Then the invariant for the triple (g1, g2, g3) is 1 ∈ H2(G, c, Z), whereas the invariant

for the triple (h1, h2, h3) is −1 ∈ H2(G, c, Z). Hence (g1, g2, g3) and (h1, h2, h3) do not

lie in the same connected component of Hurwitz space.

3.4 Invariants for Number Fields

We now introduce the invariant of Ellenberg and Venkatesh as described in [EV10].

This will be an attempt to explain (2.3.1), as follows: Ordinarily, we would expect

the right-hand side of (2.3.1) to be 1/4, but in this case, it is twice as large as we

anticipate. To each surjection ϕ : Cl(K) � C2 × C2 of Z[ζ3]-modules, we associate

an invariant z(ϕ) ∈ {0, 1}. We then hope that

E(#{ϕ ∈ SurjZ[ζ3](Cl(K), C2 × C2) : z(ϕ) = 0}) =
1

4

and

E(#{ϕ ∈ SurjZ[ζ3](Cl(K), C2 × C2) : z(ϕ) = 1}) =
1

4
.

(For convenience, we'll overuse the notation z a little bit: sometimes, we'll write z(ϕ)

to denote the invariant of a surjection, and sometimes we'll write z(ρ) to denote the

invariant of a �eld corresponding to a representation ρ : GK → C2 × C2.)

The motivation for this comes from the case of function �elds, which was studied

by Ellenberg, Venkatesh, and Westerland in [EVW09]. In this case, the extensions are

parametrized by a Hurwitz space, which may have several connected components. On

each connected component, the number of extensions agrees (asymptotically) with
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the Cohen-Lenstra predictions, but there is a discrepancy when there are multiple

connected components. This is discussed at the end of [EVW12]. The invariant

used there for classifying connected components of Hurwitz space is essentially the

Conway-Parker invariant of �3.3.

In the number �eld case, we have no Hurwitz space to parametrize the extensions,

but we are left with a vestige of the connected components, which are given in terms

of the Schur multiplier. These vestiges of connected components are parametrized in

a manner quite similar to the way connected components were parametrized in �3.3.

We now consider the following scenario, which is a modi�cation of that considered

by Ellenberg and Venkatesh in [EV10]. Let K be a number �eld or function �eld, let

G be a �nite group, and let c = c1 ∪ · · · ∪ cr ⊂ G be a union of conjugacy classes.

Then, we assume that the following conditions hold:

Conditions 3.4.1. 1. G has trivial center.

2. c generates G.

3. If n is prime to the order of an element g ∈ c, then gn ∈ c.

Example. These conditions hold if G = A4 and c is the union of the two conjugacy

classes of 3-cycles. They also hold if G = A5 and c either the conjugacy class of

3-cycles or the conjugacy class of a product of two disjoint 2-cycles.

Lemma 3.4.2 (Ellenberg-Venkatesh). Let K be a totally real number �eld, let G be

a �nite group, and let c be a union of conjugacy classes of G, satisfying Conditions

3.4.1 above, and let ρ : GK → G be a homomorphism so that

1. ρ is trivial at all in�nite places.

2. ρ is tamely rami�ed, and the image of each inertia group IP in GK is a cyclic

subgroup contained in c ∪ {1}.

Furthermore, we assume that 2H2(G, c, Z) = 0. Then ρ lifts to an extension ρ̃ : GK →
G̃c which is trivial at all in�nite places and tamely rami�ed.
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Remark 3.4.3. The conclusion of the Lemma is sometimes still valid even when

the hypotheses are not all satis�ed. In particular, if G = C2 × C2 and c consists of

just the identity, the conclusion still holds, even though c does not generate G. This

particular case will show up again shortly.

We may now de�ne the invariant z(ρ) ∈ H2(G, c, Z). If H2(G, c, Z) = 0, set

z(ρ) = 0. Otherwise, assume that H2(G, c, Z) 6= 0. For each �nite place v of K, let

pv be the corresponding prime and kv the residue �eld at v, and let qv be the size of

kv. Let Iv be the inertia group of GK at v, and �x an element π ∈ pv − p2
v. We have

a map Iv → k×v , given by σ 7→ σ(π)/π mod pv. Let gv be any inverse image of −1

so that gv topologically generates a subgroup of Itame
v of index qv−1

2
. Now, each x ∈ c

is the image of a unique x∗ ∈ c̃.

De�nition 3.4.4. The invariant z(ρ) is de�ned to be

z(ρ) =
∏

v �nite

ρ̃(gv)(ρ(gv)
∗)−1 ∈ H2(G, c, Z). (3.4.1)

This invariant is independent of choice of ρ̃, gv, and Iv.

Remark 3.4.5. De�nition 3.4.4 is heavily inspired by the invariant of Theorem 3.3.3.

The rami�ed places v of K, i.e., those for which the image of inertia at v is nontrivial,

are analogous to the branch points in the disk. In the Conway-Parker theorem, we

de�ne the invariant to be the product of the lifts of the local monodromies. In

De�nition 3.4.4, ρ̃(gv) is analogous to the local monodromy, and ρ(gv)
∗ is analogous

to a lift to c̃ ⊂ G̃c.

De�nition 3.4.6. If L/K is a Galois extension with group G, we say that all ram-

i�cation of L/K is of type c if L/K is tamely rami�ed, and for each prime P of L,

either P is unrami�ed, or else a generator of the inertia group at P is contained in c.

We consider Galois extensions L/K with Galois group G with the following prop-

erties:

Conditions 3.4.7. 1. G and c satisfy Conditions 3.4.1 above.
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2. All rami�cation of L/K is of type c.

3. K and L are totally real number �elds.

In the case where G = A5 and K = Q, if c is the conjugacy class of 3-cycles so

that H2(G, c, Z) ∼= C2, we can de�ne the invariant in more down-to-earth terms. In

this case, G̃c = Ã5 and c̃ is the conjugacy class of elements of order 3 in G̃c.

Claim 3.4.8. If L/Q is the A5-�eld which is the �xed �eld of the kernel of ρ and L̃

is the �xed �eld of the kernel of ρ̃, then the invariant z(ρ) is the number of primes

p ≡ 3 (mod 4) with even rami�cation degree in L̃, modulo 2.

Proof. We check the contribution to (3.4.1) at each prime. If L̃/L is unrami�ed above

v, then the contribution to the product is 1 ∈ {±1}. If v ≡ 3 (mod 4) and L̃/L is

rami�ed above v, then ρ̃(gv) has even order in G̃c, and ρ(gv)
∗ has odd order, so the

contribution to the product is −1. If v ≡ 1 (mod 4) and L̃/L is rami�ed above v,

then ρ̃(gv) has odd order, as does ρ(gv)
∗, so they are equal. Hence in this case, the

contribution to the product is 1. Thus, the product is −1 to the number of primes

congruent to 3 mod 4 which ramify in L̃/L. Since all rami�ed primes in L have odd

rami�cation degree and all rami�ed primes in L̃/L have rami�cation degree 2, the

claim is valid. �

Remark 3.4.9. The invariant is independent of the choice of L̃. Suppose we have

another lift L̃′. Then L̃ and L̃′ di�er by a totally real quadratic twist GQ → C2 un-

rami�ed at 2, and in any real quadratic �eld, the number of rami�ed primes congruent

to 3 (mod 4) is even.

In the case where G = A4 and K = Q, we can take c to be the union of two

conjugacy classes consisting of all 3-cycles of G. Then H2(G, c, Z) ∼= C2, and we take

G̃c = Ã4 and c̃ the collection of elements of order 3 in G̃c. The invariant is de�ned

just like in the case of G = A5 above: if L/Q is the A4-�eld over Q which is the �xed

�eld of a homomorphism ρ : GQ → A4, we can lift to an Ã4-�eld L̃ which is tamely

rami�ed and totally real. The invariant z(ρ) is again the number of primes p ≡ 3

(mod 4) with even rami�cation degree in L̃, modulo 2.

Much of the value of the invariant rests on our belief in the following conjecture:
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Conjecture 3.4.10. Assume Conditions 3.4.7 hold. As we vary L by discriminant,

z(ρ) is equidistributed over H2(G, c, Z).

Remark 3.4.11. We can think about A4 invariants in one of two ways. First, of

course, they are invariants of A4 �elds. But an A4 �eld also corresponds to a Galois

cubic �eld K together with a Galois-equivariant surjection ϕ : Cl(K) � C2 × C2:

given such a �eld K and a surjection ϕ, we construct an unrami�ed C2 × C2 cover

H of K, so that H is Galois over Q (and hence K), with Gal(H/K) ∼= C2 × C2 and

Gal(H/Q) ∼= A4. (This construction is described in section 3.5, and an example is

given in detail in section 3.6.) Now, let c be the trivial conjugacy class in C2 × C2.

Although c does not generate C2×C2, the conclusion of Lemma 3.4.2 still holds. In this

case, we have H2(G, c, Z) ∼= C2, so H lifts to �elds H̃1 and H̃2, with Gal(H̃1/K) ∼= D8

and Gal(H̃2/K) ∼= Q8 which are tamely rami�ed and totally real. Since the Sylow 2-

subgroup of Ã4 is isomorphic to Q8, H̃2 is an Ã4-�eld. If, furthermore, all rami�cation

in H is of type 3-cycle, then H̃2 is a lift of H of the type described above. Hence,

we can also think of the invariant associated to an A4 �eld H as being the invariant

associated to a pair (K, ϕ), where K is a C3 �eld an ϕ a surjection from Cl(K) to

C2 × C2.

3.5 Computing the invariant

In this section, we present an algorithm that takes an A4 �eld rami�ed at one prime

and produces an Ã4 lift of it. We then prove that the invariant associated to an A4

�eld is closely related to the class group; this will help us compute tables of invariants

much more quickly than if we had to construct the Ã4 �eld in every case.

We are now in a position to calculate the invariant associated to a totally real A4

�eld H. Let c be set of all 3-cycles in A4; this is a union of two conjugacy classes in

A4. If H is rami�ed at exactly one prime, we will prove below that all rami�cation

in H is of type c, so the Lemma in the previous section tells us that we can lift H to

a tamely rami�ed and totally real extension H̃ with Galois group Ã4
∼= SL2(F3). If

H is rami�ed at more than one prime, all we can say is that the rami�cation of some

prime is of type c.
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Proposition 3.5.1. If E/Q is an A4 �eld rami�ed at exactly one rational prime,

then all rami�cation is of type 3-cycle.

This follows quickly from the following more general Lemma:

Lemma 3.5.2. If E/Q is a �nite Galois extension with Galois group G, then the

inertia groups at the rami�ed �nite places of E generate G.

Proof. Let E0 be the intersection of the �xed �elds of all the inertia groups. Then

E0/Q is a �nite Galois extension unrami�ed at all �nite places. Hence E0 = Q, and

so the inertia groups generate G. �

Proof of Proposition. There are no wildly rami�ed A4 extensions of Q rami�ed at

exactly one rational prime (see [Jon]), so E must be tamely rami�ed. Hence, its

rami�cation type must either be that of 3-cycles, or that of products of two disjoint

2-cycles. The latter case cannot happen by the Lemma, because the products of two

disjoint 2-cycles do not generate A4. �

Now, we shall see how to lift a totally real A4 �eld H rami�ed at exactly one

rational prime to a tamely rami�ed and totally real Ã4 �eld H̃. Note that, since

H̃/H will be a quadratic extension, tamely rami�ed is equivalent to being unrami�ed

above 2.

Algorithm 3.5.3

Input: A quartic polynomial f de�ning a quartic �eld L with Galois closure a totally

real A4 �eld H rami�ed at exactly one prime.

Output: An element α ∈ L so that L(
√

α) with Galois closure H̃, so that H̃ has

Galois group Ã4, and so that H̃ is totally real and tamely rami�ed.

1. Let {αi} be a set of representatives of o×L/o×2
L which includes 1.

2. Let {Cj}j∈J be the 2-torsion ideal classes of L.

3. For j ∈ J , let Ij denote an integral ideal in Cj. Let the ideal (1) be the repre-

sentative of the trivial ideal class.

4. Each I2
j is a principal ideal; let βj be a generator for I2

j .

5. Let γ1 = 1.
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6. Let p be the rational prime at which L is rami�ed. Then poL splits as p1p
3
2, for

some prime ideals p1, p2 ⊂ oL. Let J = p1p2. Suppose that the order of J in the

class group is r. Let γ2 be a generator for the principal ideal Jr.

7. Let ∆ = {αiβjγk}.
8. For δ ∈ ∆, check if L(

√
δ) has Galois group Ã4. Stop once we have found one

that does, and call this element δ.

9. If L(
√

δ) is tamely rami�ed and totally real, let α = δ.

10. If L(
√

δ) is tamely rami�ed and totally complex, let q be a rational prime with

q ≡ 3 (mod 4) so that L(
√

δ) is unrami�ed at q. Let α = −qδ.

11. If L(
√

δ) is wildly rami�ed and totally real, let q be a rational prime with q ≡ 3

(mod 4) so that L(
√

δ) is unrami�ed at q. Let α = qδ.

12. If L(
√

δ) is wildly rami�ed and totally complex, let α = −δ.

13. Return α.

Proof of Algorithm 3.5.3. By Lemma 3.4.2, we know that there is an α ∈ H so that

H(
√

α) is Galois over Q with Galois group Ã4. Suppose we have such an α. Let q be

a rational prime di�erent from p, and let qoH = q1 · · · qg. In order for H(
√

α) to be

Galois over Q it is necessary and su�cient that the class of α in H×/H×2 is stable

under the action of Gal(H/Q). If the class of α in H×/H×2 is Gal(H/Q)-stable, then

the parity of vqi
(α) must be the same for all i. If vqi

(α) ≡ 1 (mod 2) for all i and the

class of α is Gal(H/Q)-stable, then vqi
(α/q) ≡ 0 (mod 2) for all i, and the class of

α/q is still Gal(H/Q)-stable. Hence, we may assume that vq(α) ≡ 0 (mod 2) for all

primes q of H lying over a rational prime di�erent from p. Furthermore, the parities

of vpi
(α) are equal for all primes pi of H lying over p. Let Ξ be the set of square

classes of H with even valuation at all primes not lying over p, and with all valuations

at primes over p having the same parity.

Let B be the kernel of the map Ã4 � A4. Then Ã4 acts transitively and faithfully

on a set of 8 objects partitioned into blocks of size 2 so that B �xes the blocks. The

quotient A4
∼= Ã4/B acts on the blocks in the usual way that A4 acts on 4 objects.

Hence any Ã4 �eld is the Galois closure of an octic �eld obtained by adjoining the

square root of some square class in a quartic �eld. Hence, we may restrict our list

of square classes to check still further by letting ∆ be the set of square classes in Ξ
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which contain a representative in L. This shows that we can �nd a δ in Step 8 so

that L(
√

δ) has Galois group Ã4.

The remaining steps explain how we can twist by a quadratic character in or-

der to remove wild rami�cation and rami�cation at ∞. Let ρ̃ : GQ → Ã4 be the

Galois representation corresponding to the number �eld H(
√

δ). We can �nd some

quadratic character χ : GQ → C2 so that the representation χρ̃ is tamely rami�ed

and unrami�ed at ∞. This completes the proof. �

Once we have found the desired L̃, we can simply count the number of rami�ed

primes congruent to 3 (mod 4) in L̃ in order to determine the invariant z(ρ).

Frequently, it is possible to compute the invariant without constructing an explicit

lift to an Ã4 �eld. (Still, as a matter of good discipline and for the sake of generality,

it is good to know how to perform the explicit construction.) We recall that Cl2(K)

denotes the Sylow 2-subgroup of Cl(K). We de�ne variants such as Cl+2 (K) to mean

the Sylow 2-subgroup of Cl+(K), and in general, a subscript of 2 in any sort of class

group will denote the Sylow 2-subgroup of that class group. In the situation at hand,

we have the following characterization of the invariant:

Theorem 3.5.4. Let K be a C3 �eld with prime conductor so that Cl2(K) ∼= C2×C2,

and let H be the everywhere unrami�ed C2 × C2 extension of K, so that H is an A4

�eld. Let L ⊂ H be the �xed �eld of any 3-cycle in Gal(H/Q), so that L is a non-

Galois quartic �eld over Q with Galois closure H. Suppose furthermore that Cl+2 (L)

is cyclic. Then the invariant associated to H is equal to # Cl(L) (mod 2).

Proof. By the above, we have an Ã4 �eld H̃ containing H so that H̃ is totally real and

tamely rami�ed. While the construction of H̃ is not unique, any two such H̃'s di�er

only by a quadratic twist χ : GQ → C2. Let ρ̃ : GQ → Ã4 be the Galois representation

associated to one such H̃. Suppose that H̃/H were rami�ed at two primes of H above

two distinct primes p1 and p2 of Q, so that p1 ≡ p2 ≡ 3 (mod 4). Let χ : GQ → C2 be

the quadratic character associated to the number �eld Q(
√

p1p2). Then the number

�eld associated to the representation χρ̃ is again an Ã4 �eld which is still tamely

rami�ed, totally real, and contains H, and the corresponding quadratic extension of

H is rami�ed at exactly the primes at which H̃ rami�es, with the exception of the
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primes above p1 and p2, where it is now unrami�ed. Similarly, if H̃/H were rami�ed

at a prime in H above some rational prime q ≡ 1 (mod 4), then if χ is the quadratic

character associated to Q(
√

q), then the number �eld associated to the representation

ρ̃χ is now unrami�ed at the primes above q. Hence, we may assume that there are

no primes congruent to 1 (mod 4) for which the primes in H above p are rami�ed

in H̃/H, and there is at most one such prime congruent to 3 (mod 4). If we have

a prime q ≡ 3 (mod 4) for which the primes above q are rami�ed in H̃/H, let χ be

the quadratic character associated to Q(
√
−q). Then the �eld associated to χρ̃ is

unrami�ed at the primes above q in H.

The above paragraph shows us how to produce a quadratic extension H̃/H un-

rami�ed at all �nite places, so that Gal(H̃/Q) ∼= Ã4. By the argument in the proof of

Algorithm 3.5.3, H̃ descends to a quadratic extension L̃ of L, unrami�ed at all �nite

places, so that the Galois closure of L̃ over Q is H̃. Hence, Cl+2 (L) is nontrivial. If

Cl+2 (L) is cyclic, then there is a unique nontrivial quadratic extension of L unrami�ed

at all �nite places, so this extension must be L̃. In this case, L̃ and hence H̃ are to-

tally real if and only if Cl2(L) is nontrivial. If this happens, then H̃/H is everywhere

unrami�ed (including at in�nity), so the invariant is 0. If Cl2(L) is trivial, then H̃/H

is rami�ed only at in�nity, so we can twist by some character associated to a �eld

Q(
√
−p) for some p ≡ 3 (mod 4) to obtain a totally real H̃ rami�ed only at p. Hence,

the invariant in this case is 1. In either case, the invariant is # Cl2(L) (mod 2). �

Remark 3.5.5. The hypothesis that Cl+2 (L) is cyclic holds very frequently. In fact,

there are no exceptions in the 105 �elds we tested for inclusion in the data given in

Table 3.1.

In �3.6, we will need to start with a C3 �eld K with Cl2(K) ∼= C2 × C2 and

construct an A4 �eld H containing K so that H/K is everywhere unrami�ed. We

now explain how that is done.

Algorithm 3.5.6

Input: A cubic polynomial f de�ning a Galois cubic �eld K.

Output: A quartic polynomial g so that the Galois closure of g is an A4 �eld H

containing K, with H/K everywhere unrami�ed.
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1. Let {αi} be a set of representatives of o×K/o×2
K .

2. Let {Cj}j∈J be the 2-torsion ideal classes of K.

3. For j ∈ J , let Ij denote an integral ideal in Cj. Let the ideal (1) be the repre-

sentative of the trivial ideal class.

4. Each I2
j is a principal ideal; let βj be a generator for I2

j .

5. Let ∆ = {αiβj}.
6. For δ ∈ ∆, let Kδ be the Galois closure over Q of K(

√
δ). If Kδ has Galois group

A4 and is totally real and unrami�ed at 2, let α = δ and stop.

7. Let x3 − a2x
2 + a1x− a0 be the minimal polynomial of α over Q.

8. Let b2 = −2a2, b1 = −8
√

a0, b0 = a2
2 − 4a1.

9. Let h(x) = x4 + b2x
2 + b1x + b0.

10. (Optional.) Using the LLL algorithm, �nd a polynomial g with smaller coe�-

cients than h so that g and h generate the same �eld; this is implemented in

PARI/GP [The08] as polredabs.

11. Return g.

Proof of Algorithm 3.5.6. We �rst show that there is some α ∈ ∆ so that the Galois

closure H of K(
√

α) has Galois group A4 over Q and so that H/K is everywhere

unrami�ed. By class �eld theory, we know that there is some such α ∈ K×, so it

su�ces to show that if α 6∈ ∆K×2, then K(
√

α)/K is rami�ed somewhere. Observe

that for K(
√

α)/K to be unrami�ed, it is necessary (but not su�cient) that α have

even valuation at all places of K. Those elements of K× which have even valuation

at all places of K are precisely the elements of ∆K×2, so this shows that we can �nd

such an α ∈ ∆.

Now we explain the construction of h(x). The A4 �eld H is the Galois closure of

a quartic �eld L over Q. Since α has degree 3 over Q and is not a square,
√

α has

degree 6. Let us call its Galois conjugates ±
√

α,±
√

β,±√γ. Now, L is generated by

r =
√

α+
√

β+
√

γ. The conjugates of r are r2 =
√

α−
√

β−√γ, r3 = −
√

α+
√

β−√γ,

and r4 = −
√

α −
√

β +
√

γ, and so we can check explicitly that h as constructed in

Algorithm 3.5.6 is the minimal polynomial of r. �

Suppose now that K is a C3 �eld rami�ed at exactly one rational prime p. Then H
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as constructed in Algorithm 3.5.6 is also rami�ed at p and nowhere else. Furthermore,

H is totally real.

3.6 A sample invariant computation

Let us compute the invariant for the smallest A4 �eld rami�ed at one prime. In order

to build this A4 �eld, we start with the smallest C3 �eld with prime conductor and

class group C2×C2. A polynomial generating this �eld is p(x) = x3−x2−54x+169.

Let K denote this �eld, and let α be a root of p in K. The unit group is

o×K = (α− 4)Z × (α2 + 4α− 33)Z × {±1}.

Two ideals whose ideal classes generate the class group are (5, α− 2) and (5, α− 1),

and the squares of these ideals are (α2 + 4α− 32) and (α2 + 4α− 35), respectively.

To �nd the Hilbert class �eld of K, it su�ces to look at K(
√

β), where β is the

product of elements of some subset of {−1, α−4, α2+4α−33, α2+4α−32, α2+4α−35}.
We �nd that, if β is one of {γ1, γ2, γ3}, where γ1 = α2 + 4α − 32, γ2 = (α − 4)(α2 +

4α−33)(α2 +4α−35) = 12α2 +48α−395, and γ3 = (α−4)(α2 +4α−33)(α2 +4α−
32)(α2 + 4α− 35) = 169α2 + 688α− 5612, then K(

√
β) is an unrami�ed extension of

K. Hence, if β is one of these elements, then the Hilbert class �eld H(K) of K is the

Galois closure of K(
√

β).

Now, we �nd an equation for a quartic �eld L whose Galois closure is H(K).

Take β as in the above paragraph, so that H(K) is the Galois closure of K(
√

β).

Suppose the Galois conjugates of β in K are β1 = β, β2, β3. Then the minimal

polynomial of
√

β over Q has roots ±
√

β1, ±
√

β2, and ±
√

β3. An example of a quartic

polynomial with the same Galois closure has roots
√

β1+
√

β2+
√

β3,
√

β1−
√

β2−
√

β3,

−
√

β1 +
√

β2 −
√

β3, and −
√

β1 −
√

β2 +
√

β3. A polynomial with these roots is

x4−34x2−40x+121. Using the PARI/GP function polredabs, we �nd that another

polynomial that generates the same �eld is f(x) = x4 − x3 − 7x2 + 2x + 9. Let L be

the �eld Q[x]/(f(x)), and let γ be a root of f in L.
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Now, we must construct a degree-8 extension of L whose Galois group is iso-

morphic to Ã4. First, we must �nd generators for the unit group of L. The unit

group of L is isomorphic to Z3 × {±1}, and a basis for the torsion-free part is

{γ2− 2, γ + 2, γ2− 2γ − 4}. The class group of L is trivial, so we get no contribution

from 2-torsion ideal classes. Finally, L is rami�ed exactly at the prime 163, and (163)

factors as p1p
3
2, where p1 = (γ3 − 4γ − 4) and p2 = (−4γ3 + 9γ2 + 16γ − 26). Hence,

p1p2 = (6γ3 − 11γ2 − 23γ + 23). Thus, some �eld of the form L(
√

δ), where δ is the

product of elements of some subset of {γ2−2, γ+2, γ2−2γ−4, 6γ3−11γ2−23γ+23},
has Galois group Ã4. We �nd that, if δ = γ+2, then the Galois closure of L1 = L(

√
δ)

has Galois group Ã4 over Q. Now, L1 is totally real, but it is rami�ed at 2, and hence

not tamely rami�ed. Thus, we need to twist by a character that is rami�ed at one

prime congruent to 3 (mod 4). In particular, L2 = L(
√

3δ) has Galois group Ã4, is

totally real, and is tamely rami�ed, so it is a lift of the desired form. Now, in order

to compute z(ρ), we need to determine the number of primes congruent to 3 (mod 4)

that are rami�ed to even order. There are two rami�ed primes of L2, namely 3 and

163. Only 3 is rami�ed to even order, so z(ρ) = 1.

This computation, and all others in this paper, were done using Sage [S+10] and

PARI/GP [The08].

3.7 The data

We collected data from the �rst 105 C3 �elds K rami�ed at exactly one prime such

that the Sylow 2-subgroup of the class group is K is isomorphic to C2 × C2 and

constructed the associated A4 �elds. Of these, 53891 have invariant 1 and 46109

have invariant 0. So, while we might be forgiven for expecting that the invariant

equidistributes among the two classes, the data seems to exhibit a slight bias that

gradually goes away. Table 3.1 gives incremental data for the invariants.

The �rst column denotes the number of �elds, the second denotes the number

with invariant 1, and the third denotes the proportion with invariant 1. Hence, we
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Table 3.1: Invariant Data
N Invariant 1 Proportion with invariant 1
100 55 .5500
200 104 .5200
300 160 .5333
400 212 .5300
500 266 .5320
1000 536 .5360
2000 1063 .5315
4000 2183 .5458
6000 3279 .5465
8000 4372 .5465
10000 5456 .5456
20000 10862 .5431
30000 16267 .5422
40000 21638 .5410
50000 27064 .5413
60000 32400 .5400
70000 37768 .5395
80000 43176 .5397
90000 48578 .5398
100000 53891 .5389
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suspect, somewhat hesitantly, that the two classes do equidistribute, but that there is

a secondary term of slightly lower order that leads to an apparent bias that persists

for a long time. Based on the numerical evidence, and the fact that the number of

cubic �elds with absolute value of the discriminant at most x is of the form

ax + bx5/6 + o(x5/6)

for certain explicitly known constants a and b (see [BST10] and [TT11]), we might

conjecture that the proportion of these C3 �elds with invariant 1 among the �rst x

by discriminant is

1/2 + cx−1/6 + o(x−1/6),

where c ≈ 0.27, perhaps with some logarithms thrown in because we are parametrizing

�elds in a slightly di�erent manner from [BST10] and [TT11]. Still, there is not yet

enough data to be able to distinguish between an error term of the form cx−1/6 and,

perhaps, c′x−1/8, so this conjecture ought to be taken with more than a grain of salt.



Chapter 4

Background on Bely�� maps

4.1 Introduction

In this section, we construct explicit maps of smooth projective complex algebraic

curves f : X → Y that are unrami�ed away from a few speci�ed points. Recall that

a map f : X → Y of algebraic curves of degree n is said to be unrami�ed at y ∈ Y if

f−1(y) consists of exactly n distinct points, and that f is said to be unrami�ed if it

is unrami�ed at all y ∈ Y .

Let y ∈ Y be a point, and let x1, . . . , xr be the distinct preimages of y under f .

(So, if f is unrami�ed at y, then r = n; otherwise r < n.) There exists a neighborhood

U ⊂ Y of y on which f is unrami�ed except perhaps at y. If U is su�ciently small

in the analytic topology, then the xi's are in pairwise disjoint components of f−1(U);

write ei for the degree (as a map of topological spaces) of the map from the component

containing xi in f−1(U) to U . The ei's are called the rami�cation indices.

Rami�cation indices can be de�ned more precisely, and more generally, in terms

of local rings. As before, let f : X → Y be a degree n map of algebraic curves

(now over an arbitrary algebraically closed �eld k), and let y ∈ Y be a point with

f−1(y) = {x1, . . . , xr}. Fix some xi ∈ f−1(y). Let A = Oy,Y be the ring of rational

functions on Y regular at y; similarly, let B = Oxi,X . Both A and B are local rings,

so they have unique maximal ideals p and P, respectively. The map f induces a map

f ∗ : A → B. Now, since f ∗ is a local homomorphism, there is a unique number ei so

41
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that

f ∗(p)B = Pei .

This number ei is the rami�cation index; when k = C, this de�nition agrees with the

preceding one.

In algebraic number theory and algebraic geometry, we tend to think of rami�-

cation as a menace. While there are only �nitely many rami�ed points (in the case

of a map of algebraic curves) or rami�ed primes (in the case of number �elds), it is

typically quite di�cult to control which primes are rami�ed. For instance, we might

try to construct number �elds of degree n by writing down a �random� polynomial

f(x) of degree n over Q (which will almost certainly be irreducible, assuming our

randomized selection is reasonable) and de�ning a number �eld F = Q[x]/(f(x)). In

this case, the rami�ed primes will be a subset of the primes dividing the discriminant

of f . But trying to control the discriminant of f based on its coe�cients requires us

to solve a very di�cult Diophantine equation.

Instead, we look for other methods to control rami�cation. Here, we are mostly

interested in the case of algebraic curves, and the story begins with a theorem of

Riemann, which we will state shortly after a brief discussion on monodromy.

De�nition 4.1.1. Let f : X → Y be a covering map of degree n of topological

spaces, and let y ∈ Y be a base point. Let f−1(y) = {x1, . . . , xn}. Then we obtain a

homomorphism ρ : π1(Y, y) → Sn as follows: let γ be a loop in Y based at y. Then,

for each 1 ≤ i ≤ n, γ lifts uniquely to a path γ̃i in X with γ̃i(0) = xi. Suppose

γ̃i(1) = xj. Then we set ρ([γ])(i) = j. This is independent of the choice of γ in its

homotopy class, and relabeling the points in f−1(y) is conjugation in Sn. The map

ρ, de�ned up to conjugation in Sn, is called the monodromy representation of f , and

the image of ρ is called the monodromy group of f .

In the case of a branched cover of Riemann surfaces, we also have a notion of local

monodromy.

De�nition 4.1.2. Let f : X → Y to be a branched cover of Riemann surfaces

of degree n. Let y1, . . . , yr be the branch points, and pick a base point v ∈ Y
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distinct from the branch points. For each branch point yi ∈ Y , �x a loop γi ∈
π1(Y − {y1, . . . , yr}, v) which has winding number 1 around yi and winding number

0 around yj for j 6= i. Let x1, . . . , xn be the preimages of v under f . Then each

γi induces a permutation σi ∈ Sn, de�ned as follows. For each j = 1, . . . , n, lift γi

to γ̃ij in such a way that γ̃ij(0) = xj. De�ne σi(j) by the rule γ̃ij(1) = xσi(j). The

permutation σi is called the local monodromy around yi with respect to γi.

Note that the local monodromies do depend on the choice of γi.

Riemann's Existence Theorem tells us that if we start with a (possibly punctured)

Riemann surface Y and a homomorphism ρ : π1(Y, y) → Sn, then we can build an X

and a map f : X → Y of degree n so that the monodromy representation of f is ρ.

More precisely:

Theorem 4.1.3 (Riemann's Existence Theorem). Suppose Y is a connected Riemann

surface (possibly with several punctures). If n ≥ 1 and ρ : π1(Y ) → Sn is a homomor-

phism whose image is a transitive permutation group, then there exists a connected

Riemann surface X (possibly with several punctures) and a map f : X → Y realizing

ρ as its monodromy. Furthermore, X and f are unique up to isomorphism.

We can also �ll in the punctures to obtain a branched covering X ′ → Y ′, so that X ′

and Y ′ are compact Riemann surfaces. The relevance of this result for our purposes

is that not only do X ′ and Y ′ have the structure of compact Riemann surfaces, but

they actually have the structure of algebraic curves. More precisely:

Theorem 4.1.4. There is an equivalence of categories between the category of com-

pact Riemann surfaces and the category of smooth projective algebraic curves over the

complex numbers.

Hence, we are free to study either compact Riemann surfaces or smooth projective

complex algebraic curves, whichever happens to be more convenient.

There are many other versions of Riemann's Existence Theorem. The version

quoted in Theorem 4.1.3 can be found in [Don11], �4.2.2. Theorem 4.1.4 is a deep

result. See [Har77], page 441, and the references found there for a discussion of this

theorem.
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4.2 Connection to Number Theory

In 1979, Bely�� proved the following remarkable theorem:

Theorem 4.2.1 (Bely��, [Bel79]). An algebraic curve C, de�ned initially over a �eld of

characteristic zero, can be de�ned over Q if and only if there exists a map f : C → P1

which is rami�ed above three points.

In fact, such a curve C with a map f : C → P1 rami�ed above three points isn't

just de�ned over Q; rather, both C and f can be de�ned over some number �eld,

which we call a �eld of de�nition for C. However, the �eld of de�nition is not quite

the correct object to study, since a curve and map may be de�nable over many �elds.

To de�ne the correct object, we need to put a Galois action on the set of equivalence

classes of Bely�� pairs.

For i ∈ {0, 1,∞}, �x loops γi around i ∈ P1 so that γ0γ1γ∞ is the trivial element

of π1(P1 − {0, 1,∞}). Let f : C → P1 and g : D → P1 be two Bely�� pairs. We

say that (C, f) and (D, g) are equivalent if f and g have the same degree n, and the

local monodromies σ0, σ1, σ∞ and σ′0, σ
′
1, σ

′
∞ around 0, 1, and ∞ with respect to the

γi of f and g, respectively, are simultaneously conjugate, i.e., there is some τ ∈ Sn so

that τ−1σiτ = σ′i for i = 0, 1,∞. There is an action of Γ = Gal(Q/Q) on the set of

Bely�� pairs, given by acting on all coe�cients of the curve and the map; this action

descends to an action on the set of equivalence classes of Bely�� pairs.

De�nition 4.2.2. Let (C, f) be a Bely�� pair. Then the �eld of moduli of (C, f) is

the �xed �eld of the stabilizer of the equivalence class of (C, f).

The �eld of moduli, which can also be described as the intersection of all the �elds

of de�nition for C inside a �xed algebraic closure of Q, is a better-behaved object

than a �eld of de�nition. Such �elds are of considerable arithmetic interest, thanks

to the following result of Beckmann:

Theorem 4.2.3 (Beckmann, [Bec89]). Let f : X → P1 be a Bely�� map, and let M be

the �eld of moduli for X and f . Let G be the monodromy group of f . Then if p is a

prime not dividing the order of G, then X and f have good reduction at p, and p is

unrami�ed in M .
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The converse fails, although somewhat infrequently: if p divides the order of G,

then p might still be unrami�ed in M . This turns out to be an important point:

if we wish to construct �elds which are unrami�ed outside a �nite set of primes, we

may wish to allow monodromy groups whose orders have more prime factors, with the

hope that some of these extra primes will accidentally turn out to be unrami�ed. This

situation is analogous to the di�erence between �eld discriminants and polynomial

discriminants: the primes dividing the �eld discriminant are exactly the rami�ed

primes. The �eld discriminant divides the polynomial discriminant for any de�ning

polynomial of the �eld, but there may be extraneous primes dividing the polynomial

discriminant which are nevertheless unrami�ed in the �eld.

In fact, Beckmann's Theorem also works for more general branched covers of

curves over number �elds.

Theorem 4.2.4 (Beckmann, [Bec89]). Let Y be an algebraic curve over a number

�eld K and f : X → Y a branched cover with monodromy group G. Then if p is a

prime of K lying outside the union of

1. the set of primes q dividing the order of G,

2. the set of primes of bad reduction of Y ,

3. the set of primes q for which the branch locus becomes singular modulo q,

then X and f have good reduction at p, and p is unrami�ed in the �eld of moduli of

X and f .

Roberts in [Rob04] has used this theorem to great e�ect to construct several �elds

of moderately large degree which are unrami�ed outside {2, 3}. The point, as we shall
soon see, is that writing down explicit Bely�� maps of moderately large degree can be

done relatively quickly with a computer. We shall work out some examples later.

4.3 Generalities on Bely�� maps

We quickly give just enough background for what we'll need regarding Bely�� maps; a

delightful and more leisurely exposition of this material can be found in [LZ04], and
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Figure 4.1: A sample dessin on P1. The black dots are points in f−1(1), and the
elements of f−1(0) are in bijection with the edges between two black dots. We will
soon see how to compute f from looking at the diagram.

reading it comes with this author's highest recommendation.

Following Bely��, Grothendieck noted in his famous �Esquisse d'un Programme�

[Gro97] that, corresponding to an algebraic curve C (de�ned over the complex num-

bers initially, and over Q by Bely��'s Theorem) together with a Bely�� map f : C → P1

rami�ed above three points (which we can allow to be 0, 1, and∞), we can associate

a diagram called a dessin d'enfant, or simply a dessin. The dessin of f is de�ned

to be f−1([0, 1]) ⊂ C(C). Typically, we think of a dessin as being a (fat) graph on

the Riemann surface C(C), and it is tempting to draw a picture of it, as we have in

Figure 4.1.

Remark 4.3.1. When we draw such a picture, we typically do not wish to think of

its edges and vertices as consisting of speci�c points in C(C); rather, we consider it

only as a representative of an isomorphism class of fat graphs on C(C). Hence, the

picture of the actual points in C(C) may look di�erent; for example, they may be

rotated, and some parts of the diagram may be scaled di�erently.

We can read o� a fair bit of combinatorial data from looking at a dessin. Most

importantly, we can determine the local monodromies around 0, 1, and ∞ of the

target P1.

As an example, let us compute the local monodromies around 0, 1, and ∞ of the

dessin in Figure 4.1. In �gure 4.2, we have drawn white dots to represent the elements

of f−1(0), and we have arbitrarily labeled the edges and placed the number to the right

of the corresponding edge when we think of the edge as being directed from the black

dot to the white dot. To obtain the local monodromy around 0, consider traversing a
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Figure 4.2: The same dessin as in Figure 4.1, but now with the white dots representing
the elements of f−1(0), and with the edges labeled (in an arbitrary manner).

small counterclockwise circle around each white dot. Each circle will intersect several

edges; the edges it intersects will form a cycle in the cycle decomposition of the local

monodromy. Multiply these cycles together for all such white points to obtain the

full local monodromy around 0. In this case, the local monodromy around 0 is

σ0 = (12)(34)(56)(78).

Similarly, to obtain the local monodromy around 1, we traverse small counterclockwise

circles around each black point to obtain the cycle decomposition. Hence, the local

monodromy around 1 is

σ1 = (123)(475)(6)(8).

One way to obtain the local monodromy around ∞ would be to use the relation

σ0σ1σ∞ = 1 to see that

σ∞ = (1465873)(2).

Alternatively, we could look at each connected component of the complement of the

dessin and travel around the boundary of that component in the clockwise direction

and record the cycle consisting of the edge numbers we encounter in order. (This is

why we have insisted on placing the edge numbers on the right!) This of course also

tells us that

σ∞ = (1465873)(2).
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From here, we can determine the monodromy group of our dessin: it is the

subgroup of the symmetric group (in this case, S8) generated by σ0 and σ1. In

this case, the monodromy group is the unique simple group of order 168, namely

GL3(F2) ∼= PSL2(F7).

Conversely, if we are given three permutations σ0, σ1, σ∞ ∈ Sn with the property

that σ0σ1σ∞ = 1, we can �nd some algebraic curve C together with a Bely�� function

f : C → P1 realizing these three permutations. For i ∈ {0, 1,∞}, let pi denote the

cycle type of σi; we think of pi as a partition of n. The curve C will be connected if

and only if 〈σ0, σ1, σ∞〉 ≤ Sn is a transitive permutation group. In the case that C is

connected, the Riemann-Hurwitz formula tells us that if there are a total of r parts

in p0, p1, p∞, then C has genus 1
2
(n + 2− r).

The following de�nitions will be useful in the remainder of this section.

De�nition 4.3.2. The triple (σ0, σ1, σ∞) of permutations is called the constellation

of the dessin (or the Bely�� function). The triple (p0, p1, p∞) of partitions of n is called

the passport.

Note that the monodromy group is the group generated by σ0, σ1, and σ∞.

De�nition 4.3.3. Let f : C → X and g : D → X be two branched coverings of

algebraic curves. We say that f and g are isomorphic if there exists an isomorphism

u : C → D of algebraic curves so that the diagram

C
u //

f   @
@@

@@
@@

D

g
~~}}

}}
}}

}

X

is commutative.

4.4 Computations of Bely�� maps

In the case when C = P1, it is frequently possible to compute Bely�� maps explicitly

in a rather short amount of time. The process is perhaps best illustrated with an

example.
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Example. Let us suppose that we wish to �nd a Bely�� map f of degree 6 on an

algebraic curve C realizing the passport p0 = (4 + 1 + 1), p1 = (3 + 2 + 1), and

p∞ = (4 + 2). By the genus formula given in the introduction, we know that C

has genus 0. Hence, we can write f as a rational function in one variable. Such a

function f has a quadruple zero at one point together with two simple zeros, and also

has a quadruple pole at one point, and a double pole at another. After applying a

suitable Möbius transformation, we may assume that the quadruple zero is at 0 and

the quadruple pole is at ∞. Furthermore, if we let g(x) = f(x) − 1, then we know

that g must have a triple zero at some point, a double zero at another point, and a

simple zero at yet another one. We may also assume that the triple zero of g is at

1. Hence, there are eight points of interest to us, of which we have �xed three. So,

there are �ve points left to locate, as well as a scaling constant.

Putting all this information together tells us that we can write

f(x) = K
x4(x2 + ax + b)

(x− e)2

and

g(x) = f(x)− 1 = K
(x− 1)3(x− c)2(x− d)

(x− e)2

for suitable constants a, b, c, d, e, K. These constraints yield a system of equations

e2 + c2dK = 0

−2e− c2K − 2cdK − 3c2dK = 0

1 + 2cK + 3c2K + dK + 6cdK + 3c2dK = 0

−K − 6cK − 3c2K − 3dK − 6cdK − c2dK = 0

3K + 6cK + c2K + 3dK + 2cdK = bK

−3K − 2cK − dK = aK.

This system of equations is su�ciently straightforward that Mathematica can solve

it in a matter of seconds, but the resulting algebraic numbers ought not be displayed

in full in polite society. However, we can write down the minimal polynomials in
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concise form, and all the coe�cients are de�ned over the quartic �eld de�ned by

x4 − 2x3 + 6x2 − 6, which has discriminant −26 · 33 · 5.

Let p = (p0, p1, p∞) be a passport, and let Σ be the set of constellations (σ0, σ1, σ∞)

in Sn. We de�ne an equivalence relation ∼ on Σ by saying that (σ0, σ1, σ∞) ∼
(τ0, τ1, τ∞) if there is some ρ ∈ Sn so that ρ−1σiρ = τi for all i ∈ {0, 1,∞}. One can
verify that two dessins are isomorphic if and only if they have equivalent constella-

tions, as is done in [LZ04], Proposition 1.2.16.

Example. Let's return to the case of Figure 4.1. To determine the equation here,

we must �rst work out the passport. In a neighborhood of each point in f−1(0),

the image of f contains two copies of [0, ε], for ε su�ciently small. Since there are

four such points, p0 = (2 + 2 + 2 + 2). Similarly, in a neighborhood of each point in

f−1(1), the image of f contains several copies of [1− ε, 1] for ε su�ciently small; the

number of copies is equal to the number of edges emanating from that vertex. Hence

p1 = (3+3+1+1). Finally, the elements of f−1(∞) are in bijection with the faces of

the diagram, and the degrees are equal to the number of vertices we reach traveling

around the face (counted with multiplicity). Hence p∞ = (7 + 1).

Since the automorphism group of P1 is 3-transitive, we are allowed three normal-

ization conditions for the function, so we can assume that the pole of order 7 is at

∞, the simple pole is at 1, and that the sum of the four double zeros is 0. Hence, we

can write

f(x) = K
(x4 + ax2 + bx + c)2

x− 1

and

f(x)− 1 = K
(x2 + dx + e)3(x2 + fx + g)

x− 1
.
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Mathematica solves the system of equations easily, giving us

a = −6

7
,

b = −32

49
,

c =
159

343
,

d = −4

7
,

e = −17

49
,

f =
12

7
,

g =
9

7
,

K = −823543

221184
.

(We could, of course, choose di�erent normalization conditions, for instance, by

putting the simple pole somewhere else, which would give us di�erent Bely�� maps,

but they would all be isomorphic.)

4.5 Extracting Number Fields with Limited Rami�-

cation from Dessins

As we mentioned in section 4.2, it is possible to construct number �elds unrami�ed

outside primes dividing |G| and∞ with Galois group G from a Bely�� map f : P1 → P1

of degree n and monodromy group G. Let us demonstrate this technique with an

example in Figure 4.1, as the example will show us how to perform this construction

in full generality. From the previous section, we know that the Bely�� map is given by

f(x) = −7(343x4 − 294x2 − 224x + 159)2

221184(x− 1)
.
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Now, consider the polynomial

g(x, t) = −7(343x4 − 294x2 − 224x + 159)2 + t(221184(x− 1)).

The polynomial discriminant of g(x, t) is

−2104324749t4(t + 1)4.

Hence, if t is chosen so that g(x, t) is irreducible, and Kt is a root �eld of g(x, t), then

the only primes that can ramify (or, equivalently, divide the discriminant of Kt) are

2, 3, 7, and the primes dividing t and t+1. Choosing t = −2, for instance, then gives

us a �eld rami�ed only at 2, 3, and 7, with Galois group PGL2(F7).

Note that the monodromy group PSL2(F7) and the Galois group PGL2(F7) are

quite closely related. The monodromy group is in fact the Galois group of a slightly

di�erent extension, of function �elds of curves, and it coincides with the monodromy

group of the corresponding cover of curves. If we delete the rami�ed points from the

source and target P1's for f , we obtain a covering space f : X1 → Y1 of punctured

genus-0 curves. However, this cover is not Galois; let X2 be the Galois closure of f .

Now, let X and Y be the obvious compacti�cations of X2 and Y1, respectively. Then

f induces a map f ′ : X → Y = P1 rami�ed above three points. Since the monodromy

group of the dessin has order 168, we know that f ′ has degree 168. Now, Q(X)/Q(Y )

is a Galois �eld extension with Galois group equal to the monodromy group of the

dessin. We have a natural map

Gal(Q(X)/Q(Y )) ↪→ Gal(Q(X)/Q(Y )), (4.5.1)

which is induced from taking the composita of Q(X) and Q(Y ) with Q. Furthermore,

the group on the left of (4.5.1) is normal in the group on the right.

Now, by Hilbert's Irreducibility Theorem (see [Völ96], Theorem 1.23), the Galois

groups of the specializations of Q(X)/Q(Y ) are equal to Gal(Q(X)/Q(Y )) for all but

a thin set of specializations. Hence, even before computing any Galois groups, we

knew that the Galois groups of g(x, t) would contain PSL2(F7) as a normal subgroup



4.5. NUMBER FIELDS AND DESSINS 53

for almost all values of t. In this case, the quotient is C2
∼= Gal(Q(

√
−7)/Q). Indeed,

the Galois group of g(x, t) over Q(
√
−7) is isomorphic to PSL2(F7) for almost all t;

it is PGL2(F7) over any number �eld not containing Q(
√
−7).



Chapter 5

Origamis

5.1 Introduction

In addition to studying Bely�� maps, it is also interesting to consider branched covers

of other algebraic curves. Moving up a genus, then, we can attempt to construct

branched covers of elliptic curves. This is a more di�cult problem, but it is still

possible to give concrete covers in at least a few cases.

By the Riemann-Hurwitz formula, an unrami�ed cover of a genus-1 curve must

again be a genus-1 curve, which means that such a map is simply a composition of

an isogeny of elliptic curves and a translation. Since these maps are well-understood,

we will not be concerned with them here.

However, if we allow one branched point on our elliptic curve, then there are

covers by higher-genus curves. These one-point covers admit a pictorial interpretation

analogous to that of dessins for Bely�� maps. Such maps are called origamis.

Over C, any elliptic curve E can be written as C/Λ, for some lattice Λ ⊂ C. We

will �nd it most helpful to think of E as a fundamental parallelogram for Λ. The

choice of lattice Λ or fundamental parallelogram determines the complex structure

on E. Many of our arguments in this section do not depend on the choice of complex

structure; when this happens, we choose to work with the square lattice Λ = Z[i], and

our fundamental parallelogram of choice will be the square S with vertices 0, 1, 1+ i,

and i. (The only reason we prefer this parallelogram is that it is easier to draw than

54
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Figure 5.1: This diagram represents a genus-2 curve with a degree-3 map to the
elliptic curve y2 = x3 − x. Here we identify opposite edges, meaning that edge a is
identi�ed with edge b, edge c with edge d, edge e with edge f , and edge g with edge
h.

are other parallelograms. It should not generally be assumed that we are interested in

the special properties of the elliptic curve C/Z[i] not enjoyed by other elliptic curves.)

Our elliptic curve will then be the square, with opposite edges identi�ed.

Now, consider a disjoint union of n translates of S, and identify various edges to

form an orientable surface X subject to the following requirements:

1. X is connected.

2. Every left edge is identi�ed with a unique right edge, and vice versa.

3. Every top edge is identi�ed with a bottom edge, and vice versa.

If we remove all the vertices of the n squares, the resulting �gure carries the structure

of a Riemann surface, obtaining its complex structure whose charts are (slightly

enlarged versions of) the original n squares minus the vertices. The resulting Riemann

surface X̃ is then a compact Riemann surface with several punctures. There is a

unique way of compactifying X̃ so that its compacti�cation is a compact Riemann

surface; we call this Riemann surface X. Furthermore, X admits a map to the elliptic

curve C/Z[i] by mapping a point in any translate of S to the corresponding point

in S. This map is branched only above the vertex of S. An example can be seen in

Figure 5.1. In this diagram, we have explained the edge identi�cation; in the future,

if there are no markings on the edges, we take this to mean that opposite edges are

identi�ed.
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Had we chosen to distinguish a di�erent elliptic curve with a di�erent fundamental

parallelogram P , the corresponding origami would simply consist of of a disjoint union

of n translates of P with similar edge identi�cations.

The origami diagram, though apparently extremely simple, turns out to carry a

wealth of combinatorial information in readily available form. We will see later how

to read o� some of this information at various points throughout this chapter.

5.2 A �rst computation of an algebraic origami

In this section, we construct a family of examples of explicit origamis, one for each

genus g.

De�nition 5.2.1. We say that an origami is totally rami�ed if the preimage of the

branch point is a single point.

The origamis we construct here will all be totally rami�ed. Later, we construct

origamis which are not totally rami�ed.

Theorem 5.2.2. For each g ≥ 1 and t 6= 0,−1, the genus-g curve

Ct : y2 = x(x + 1)(x2g−1 + tj(x)2),

where

j(x) =

g−1∑
i=0

(
2g − 1

2i

)
(x + 1)i,

admits a degree 2g − 1 map to the elliptic curve

Et : y2 = x(x + 1)(x + t),

totally rami�ed above (0, 0) and unrami�ed everywhere else. The map is given by

(x, y) 7→ (f1(x), f2(x)y), where

f1(x) =
x2g−1

j(x)2
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and

f2(x) =
xg−1

∑g−1
i=0

(
2g−1
2i+1

)
(x + 1)i

j(x)3
.

Proof. We �rst check that (f1(x), f2(x)y) actually gives a map from Ct to Et. This

amounts to checking that

f2(x)2(x(x + 1)(x2g−1 + tj(x)2)) = f1(x)(f1(x) + 1)(f1(x) + t)

is a formal identity. This does happen to be the case; hence (f1(x), f2(x)y) does de�ne

a map from Ct to Et.

Now, we check that the rami�cation type is as claimed. To do this, we check

that if f(x, y) = (f1(x), f2(x)y) is the map above, and ω = dx
y
∈ Ω1

Et
is an invariant

di�erential on Et, then

f ∗ω = (2g − 1)
xg−1 dx

y
.

Hence, f is totally rami�ed at (0, 0) and unrami�ed everywhere else. �

Remark 5.2.3. It is worth noting that the map (f1(x), f2(x)y) is independent of t

and hence de�nes a map F : P2
C → P2

C. If we �x an elliptic curve Et in the target P2,

then F−1(Et) is a union of several irreducible components, one of which is Ct. It is

also worth noting that if we take t = 0 or t = −1, then Et is a nodal cubic, and Ct is

a singular quintic of arithmetic genus 0. This will be relevant later in this section.

The proof given above thoroughly fails to capture the motivation that went into

the discovery of this result. In fact, the story of �nding these examples is much more

interesting than is the given proof. Therefore, we now discuss how the reader could

(and the author did) discover such an example. To do this, we carefully work with

the lowest-degree example: that of a degree-3 origami from a genus-2 curve to an

elliptic curve. Such an origami must necessarily be totally rami�ed.

In the remainder of this section, as well as in future sections, we perform some

educated guesswork; it will not be clear whether our guesses will turn out to be

successful until we present a proof in the style of that of Theorem 5.2.2.

We will construct a family of genus-2 curves mapping to a family of elliptic curves,

parametrized (essentially) by their Legendre form. Hence, for any j-invariant other
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Figure 5.2: Here, we shrink the dotted edges to a point. The resulting surface has
geometric genus 0.

Figure 5.3: A three-dimensional version of Figure 5.2.

than 0 or 1728, we will actually construct six genus-2 curves mapping to an elliptic

curve with this j-invariant. These six genus-2 curves are generically all distinct.

To do this, we start by constructing a cover C ′ of the nodal cubic

E ′ : y2 = x3 + x2,

which we expect to arise as a degeneration of covers of elliptic curves which limit to

E ′. One possibility is that the degenerate origami diagram will look like Figure 5.2,

with the dotted edges collapsed to a point. The curve represented by this origami has

geometric genus 0, since it is a double torus with three pinched loops, as in Figure

5.3. Furthermore, since the origamis are totally rami�ed, the family of covers must

degenerate to a curve with only one preimage of the branch point in E ′. Finally,

a map C ′ → E ′ can be described as a map from the normalization of C ′ to the

normalization of E ′.

The next thing to do is to construct explicit equations for C ′, as well as their

normalization maps. While in general this is a notoriously di�cult problem, it is easy

in this case. By the picture, we can see that C ′ has one nodal point and has geometric
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genus 0; hence it has a Weierstraÿ equation of the form y2 = (x − a)4(x − b). We

choose to take a = 0 and b = −1 so that we obtain the curve

C ′ : y2 = x5 + x4.

To compute the normalization of E ′, we note that the map E ′ → P1 given by

(x, y) → x + 1 has a square root y/x in C(E ′). Letting u = y/x, we have x = u2 − 1

and y = u3 − u, so C(E ′) = C(u), and the normalization map is P1 → E ′, given by

u 7→ (u2 − 1, u3 − u). A similar computation shows that the normalization of C ′ is

P1 → C ′, given by t 7→ (t2 − 1, t(t2 − 1)2). Note that, in the normalizations of both

C ′ and E ′, the preimage of the nodal point is {±1} ⊂ P1.

Earlier, we worked out that the map on normalizations must have degree 3 and

exactly two branch points. Furthermore, the branch points must be {±1}, and their

preimages must be {±1}. Fortunately, there are very few maps P1 → P1 with only

two branch points: they are simply conjugates of z 7→ zn, where n is the degree of

the map. In this case, the map on normalizations is

z 7→ z3 + 3z

3z2 + 1
.

Now, in order to compute the map f : C ′ → E ′, note that we have the following

commutative diagram:

P1 //

��

P1

��
C ′ f // E ′

Furthermore, the vertical maps have near-inverses; the inverse of the vertical arrow

on the left is given by (x, y) 7→ y/x2. Hence, f is the composition of the other three

arrows; putting this together, we have

f(x, y) =

(
x3

(3x + 4)2
,
xy(x + 4)

(3x + 4)3

)
.

We now proceed to prolong f to a map from a family of genus-2 curves to the
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Legendre family of elliptic curves by means of deformations.

In order to �gure out the map from a family of nonsingular genus-2 curves to a

family of elliptic curves, we deform the de�ning equation for the nodal quintic and

for the map. We let the de�ning equation of the genus-2 curve be

Ct : y2 = x5 + (1 + at)x4 + btx3 + ctx2 + dtx,

where a, b, c, d ∈ C[[t]]. The de�ning equation of the elliptic curve will be

Et : y2 = x(x + 1)(x + t).

The map will be

(x, y) 7→
(

x3

((3 + et)x + (4 + ft))2
,

(x2 + (4 + gt)x)y

((3 + et)x + (4 + ft))2

)
.

A priori, a, b, c, d, e, f, g are power series in t; for now, we are only interested in their

constant terms. Expanding everything out and equating the txi terms for various

values of i gives us a system of linear equations; we then �nd that

a = 9

b = 33

c = 40

d = 16

e = f = g = 0

is a solution. Miraculously, these values of a, b, c, d, e, f, g are not merely the constant

terms of power series; they are in fact the entire power series. Hence, if we let

Ct : y2 = x5 + (1 + 9t)x4 + 33tx3 + 40tx2 + 16tx

and

Et : y2 = x(x + 1)(x + t),
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then

f(x, y) =

(
x3

(3x + 4)2
,
xy(x + 4)

(3x + 4)3

)
is a map f : Ct → Et. Indeed, this map is only branched over (0, 0), with its

preimage being (0, 0); we can check this directly, or we can verify that the pullback

of the invariant di�erential ω = dx
y
∈ Ω1

Et
(which has no zeros or poles) is 3xdx

y
∈ Ω1

Ct
,

which has a double zero at (0, 0) and no other zeros or poles.

The same method allows us to construct totally rami�ed origamis in every genus.

For instance, in genus 3, we let

Ct : y2 = x7 + (1 + 25t)x6 + 225tx5 + 760tx4 + 1200tx3 + 896tx2 + 256tx

and

Et : y2 = x(x + 1)(x + t).

Then

f(x, y) =

(
x5

(5x2 + 20x + 16)2
,
x3(x2 + 12x + 16)y

(5x2 + 20x + 16)2

)
is a totally rami�ed origami f : Ct → Et.

It is worth noticing that, in these cases, we need only change the equation of the

genus-g curve as t varies; in particular, the map does not change. Hence, we have

a map f : P2 → P2 so that the inverse images of elliptic curves in a certain family

are all genus-g curves, so that the map is an origami. The proof above explains this

phenomenon.

It would be interesting to see this method generalize to cases where the base need

not be an elliptic curve. In particular, we would like to know to what extent is it

possible to construct branched covers of a curve C in P2 by constructing a suitable

map f : P2 → P2, chosen so that its branch locus is consistent with the desired

branching properties of the cover of C, and restricting to the map f |D: D → C,

where D is some irreducible component inside f−1(C) for which f |D: D → C is �at.

The author has used this method to construct several examples of branched covers of

higher-genus curves, but a detailed study of this method may be the topic of future

work.
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Figure 5.4: This is an origami diagram for a genus-2 curve with a degree-5 map to an
elliptic curve. Above the branch point, we have one triple point and two unrami�ed
points. We call this origami a Swiss cross.

5.3 A non-totally rami�ed example

The method described in the last section works well for totally rami�ed origamis,

mainly because we can work out an equation for the degenerate cover. In other

cases, it is not clear how the degenerate cover ought to look, in which case we won't

even be able to get started with the previous method. Fortunately, there are other

approaches. Here we outline one which relies on some numerical magic that looks

daunting in general, but which is possible to make work in at least a few instances.

Here, we work out an equation for origami f : C → E of degree 5 and genus 2,

with one triple point (so that the monodromy type is a 3-cycle). An origami diagram

for such a curve can be found in Figure 5.4.

Theorem 5.3.1. The genus-2 curve

C : −
√

5y2 = x(x− 1)(x− α)(x− 2α + 1)(x− 2α), α = 81 + 36
√

5,

admits a degree-5 map f to the elliptic curve

E : y2 = x3 − x

branched only above ∞ with a triple point above ∞. The map is given by

f(x, y) = (g(x), h(x)y),



5.3. A NON-TOTALLY RAMIFIED EXAMPLE 63

where

g(x) =
x5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

b2x2 + b1x
,

h(x) =
x6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x + c0

dx2(x− 2α)2
,

and

a4 = −45(9 + 4
√

5)

a3 = 660(161 + 72
√

5)

a2 = −3240(2889 + 1292
√

5)

a1 = 1980(51841 + 23184
√

5)

a0 = −324(930249 + 416020
√

5)

b2 = −100
√

5(2889 + 1292
√

5)

b1 = 1800
√

5(51841 + 23184
√

5)

c5 = −54(9 + 4
√

5)

c4 = 1030(161 + 72
√

5)

c3 = −7920(2889 + 1292
√

5)

c2 = 18780(51841 + 23184
√

5)

c1 = 216(930249 + 416020
√

5)

c0 = −1944(16692641 + 7465176
√

5)

d = 1000
√

5(219602 + 98209
√

5).

Proof. In order to show that f(x, y) gives a map E → C, we need only check that

whenever (x, y) is a point on C, then (g(x), h(x)y) is a point on E. This amounts to

checking that if

−
√

5y2 = x(x− 1)(x− α)(x− 2α + 1)(x− 2α),
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then

− 1√
5
h(x)2y2 = g(x)3 − g(x),

or

h(x)2x(x− 1)(x− α)(x− 2α + 1)(x− 2α) = g(x)3 − g(x).

This now amounts to verifying a formal identity of rational functions.

To show that the map is only branched above ∞, pick a di�erential ω = dx
y
on E.

This di�erential has no zeros or poles. The pullback f ∗ω ∈ Ω1
C will therefore have

zeros or poles exactly at the branch points of f , and the order of each zero or pole

is one less than the rami�cation index at that zero or pole. We compute f ∗ω to be

a constant multiple of dx
y
, which has a double zero at ∞ and no other zeros or poles.

Hence f is branched only above ∞, with a triple point above ∞. �

As in the previous section, the proof sheds no light on how one could actually

come up with the equations of E and f without �rst being told the answer. We now

describe how to compute it from scratch, once again using some educated guesswork.

All genus-2 curves are hyperelliptic and hence can be written in the form

y2 = a quintic in x (or a sextic in x, if we prefer, but that will be less convenient

here). Let us decide that f will be branched above the point O = (0 : 1 : 0) of E. Let

us also decide that, if ω = dx
y
is the invariant di�erential on E, then f ∗ω = adx

y
∈ Ω1

C ,

for some a ∈ C×. Now, f ∗ω has a double zero at P = (0 : 1 : 0) ∈ C, and no other

zeros or poles. Hence, such a map will be a cover of the desired form.

Now, suppose we had such a map f . Let γ be a loop in C (or an element of

H1(C, Z), if we prefer). Then we have∫
γ

f ∗ω =

∫
f∗γ

ω.

These integrals are known as periods. Now, since H1(E, Z) is Z2, the periods of E

form a lattice in C. But since H1(C, Z) is 4-dimensional, the periods of dx
y
∈ Ω1

C are

typically dense in C. In order to �nd a curve C that admits such a map, it is necessary

that its periods form a lattice, and in fact a lattice homothetic to that formed by E.
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Figure 5.5: An elliptic curve with a typical basis of H1 shown.

Figure 5.6: A genus 2 curve with a typical basis of H1 shown.

It is now important to be able to determine the degree of the map from under-

standing its action on loops. That is, suppose we have a map f : C → E, and

that we know what its induced map f∗ : H1(C, Z) → H1(E, Z) (or equivalently

f ∗ : H1(E, Z) → H1(C, Z)) is. We need to be able to use this information to deter-

mine the degree of f ; in other words, the induced map f ∗ : H2(E, Z) → H2(C, Z).

Let x and y be the duals (in H1) of the loops in E shown in Figure 5.5, oriented

in such a way that x and y intersect positively. Then the fundamental class [E] is

x ^ y. Also, let α, β, γ, δ be the duals of the loops in C shown in 5.6, oriented in

such a way that α and β intersect positively, as do γ and δ. Suppose now that
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f∗(α
∨) = m1x

∨

f∗(β
∨) = n1y

∨

f∗(γ
∨) = n2y

∨

f∗(δ
∨) = m2x

∨.

The induced map on H2 is then given by

f ∗([E]) = f ∗x ^ f ∗y = (m1α + m2δ) ^ (n1β + n2γ) = (m1n1 −m2n2)[C].

Hence (the absolute value of) the degree is |m1n1 −m2n2|.

Since we are interested in degree-5 maps, we choose m1 = 1, n1 = 3, n2 = −1,

and m2 = 2. Then we have the following map on H1:

α∨ 7→ x∨,

β∨ 7→ 3y∨,

γ∨ 7→ −y∨,

δ∨ 7→ 2x∨.

(5.3.1)

Now, we specialize to the elliptic curve E : y2 = x3 − x, which has j-invariant

1728. Computations with this elliptic curve are somewhat nicer than they are with

arbitrary elliptic curves because its period lattice is a square lattice. Hence, we can

take its fundamental periods to be $ and $i, where $ ≈ 5.2441151.

If we write C as y2 = a quintic in x, let the roots of the quintic be r1, r2, r3, r4, r5.

We identify α∨, β∨, γ∨, δ∨ with representatives of their respective homology classes

which pass through two of the Weierstraÿ points of C, i.e., the preimages of r1, r2, r3,

r4, r5, and ∞ under the natural hyperelliptic map C → P1. We can therefore draw

the images of α∨, β∨, γ∨, δ∨ under the hyperelliptic map in P1; this picture is given in

Figure 5.7.

Figure 5.7 shows us how the loops in Figure 5.6 are related to periods of dx
y
∈ Ω1

C .

The period
∫ r2

r1

dx
y
is 1

2

∫
α∨

dx
y
, for example. Note that the sum of the three green loops
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Figure 5.7: The data of Figure 5.6 has been rearranged. For example, the integral of
a form over the dual of α is twice the integral from r1 to r2. This �gure and Figure
5.6 have the same symplectic intersection matrix.

is 0 ∈ H1(C, Z), so we have∫ r2

r1

dx

y
+

∫ r4

r3

dx

y
+

∫ ∞

r5

dx

y
= 0,

or ∫ r4

r3

dx

y
= −

∫ r2

r1

dx

y
−
∫ ∞

r5

dx

y
= −3

∫ r2

r1

dx

y

since ∫ ∞

r5

dx

y
= 2

∫ r2

r1

dx

y

by (5.3.1).

Now, we wish to �nd a genus-2 curve whose periods with respect to the di�erential
dx
y
are proportional to $i, 3$, 3$i, and $. That is, if we let C be the curve

C : y2 = (x− r1)(x− r2)(x− r3)(x− r4)(x− r5),

then we have

2

∫ rj+1

rj

dx√
(x− r1)(x− r2)(x− r3)(x− r4)(x− r5)

= Kmj$

for some constant K and for j = 1, 2, 3, 4, where m1 = i, m2 = 3, m3 = 3i, and

m4 = 1. Notice now that this holds if we let r1 + r5 = r2 + r4 = 2r3. Let us also
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normalize C, by setting r1 = 0 and r2 = 1, which we can do because PGL2(C) acts

3-transitively on P1
C.

Now, it is not a priori clear that we can �nd a curve C whose underlying quintic

has �ve real roots. Still, it is reasonable to begin the search by looking for such a C.

After this simpli�cation, we see that C has the form

C : y2 = x(x− 1)(x− α)(x− 2α + 1)(x− 2α).

The task of �nding α remains. Furthermore, α is an algebraic number.

Using a Newton's method algorithm, we can compute α to high precision, as-

suming that we can compute periods accurately. Fortunately, this can be done quite

rapidly by using tanh-sinh quadrature, as described in [BB11]. Using this method,

we can compute α to hundreds of digits. The task remaining is to determine which

algebraic number α is, i.e. to �nd a nonzero polynomial in Z[x] having α as a root.

This can be done by using continued fractions if α is rational or quadratic, and it can

be done using LLL (see [KZ01]) in higher degrees.

This computation yields a number α, whose �rst few digits of α are

α ≈ 161.49844718999242907073,

and the continued fraction of this number is roughly

[161; 2, 160, 2, 160, 2, 160, 2, 160, 2, 7, . . .].

A good guess, then, is that α = [161; 2, 160] = 81 + 36
√

5. Indeed, computation of

more digits helps to increase con�dence in this guess.

It's worth mentioning here that this method does not prove that α = 81 + 36
√

5

works, since this number might merely be exceptionally close to the true value of α.

However, once we have the equation for the map as well, we will be able to check that

this number is actually correct if we desire to do so. In the opinion of the author,

this should not be seen as a defect of the method any more than having to verify that

a clever approach to solving any other problem works by justifying our approach a
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posteriori by presenting a complete solution as we eventually do in the above proof.

Now, working on the assumption that α = 81 + 36
√

5, we compute the de�ning

equation of the map f : C → E. Analytically, E = C/Λ′, where Λ′ is the period

lattice for C (not for E; they are only homothetic lattices), and the map f : C → C/Λ′

is given by

f(P ) =

∫ P

(−∞,0)

dx√
x(x− 1)(x− α)(x− 2α + 1)(x− 2α)

.

We can then convert this to a point on E by using the elliptic exponential function,

which is given in terms of the Weierstraÿ ℘-function and its derivative for the lattice

Λ′: the map C/Λ → E is given by z 7→ (℘(z), ℘′(z)). If we know the form of the map

f and values of f(P ) at enough points, then we can compose with the map C/Λ → E

and solve a system of linear equations to determine the map, with coe�cients being

decimal expansions. Then, just as before, we can convert the decimal expansions into

concrete algebraic numbers.

Before we compute the map from C to E, we change variables slightly, letting our

genus-2 curve be

−
√

5y2 = x(x− 1)(x− α)(x− 2α + 1)(x− 2α).

This does not change the isomorphism class of the curve, but it does make the coe�-

cients (slightly) cleaner. But since this change of variables also makes the equation of

the curve slightly less pleasant, we will revert to the old form once we have computed

it.

The map f : C → E can be written as f(x, y) = (g(x, y), h(x, y)), where g, h :

C → P1. Furthermore, the map x : E → P1 which remembers the x-coordinate has

degree 2, and the map y : E → P1 which remembers the y-coordinate has degree 3.

Hence, g has degree 10, and h has degree 15. Also, from the origami diagram of Figure

5.4, we can see that f respects the hyperelliptic involution: the elliptic involution on

the elliptic curve corresponds to a rotation by π of the fundamental parallelogram;

similarly, the hyperelliptic involution on the genus-2 curve corresponds to a rotation
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by π of the origami diagram. Hence, f(x,−y) = (g(x, y),−h(x, y)), so g(x, y) only

depends on x, and h(x, y)/y only depends on x. Finally, g has two simple poles. This

allows us to determine that we can write

g(x, y) =
x5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

b2x2 + b1x + b0

.

Using the method as outlined above, we �nd that

a4 = −45(9 + 4
√

5)

a3 = 660(161 + 72
√

5)

a2 = −3240(2889 + 1292
√

5)

a1 = 1980(51841 + 23184
√

5)

a0 = −324(930249 + 416020
√

5)

b2 = −100
√

5(2889 + 1292
√

5)

b1 = 1800
√

5(51841 + 23184
√

5)

b0 = 0.

Remark 5.3.2. The coe�cients in the map are surprisingly nice. Let ε = 1+
√

5
2

; this

is a fundamental unit in Q(
√

5). Then the coe�cients in the map are (essentially)

integral multiples of powers of ε. We have

ε6 = 9 + 4
√

5,

ε12 = 161 + 72
√

5

ε18 = 2889 + 1292
√

5

ε24 = 51841 + 23184
√

5

ε30 = 930249 + 416020
√

5

ε36 = 16692641 + 7465176
√

5.

Hence, there is some homogeneity in the map: if we replace x by ε6x, then all the

coe�cients are either integers or integral multiples of
√

5. This seems unlikely to be
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a coincidence, but at the moment, we lack an explanation for this phenomenon.

To compute h(x, y), we recall that g and h satisfy the relation −
√

5h2 = g3 − g.

Hence, we compute g3 − g. Also, we know that h(x, y) can be written as h1(x)y, so

h1(x)2 =
g(x)3 − g(x)

x(x− 1)(x− α)(x− 2α + 1)(x− 2α)
.

We therefore have

h(x, y) =
(x6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x + c0)y

dx2(x− 2α)2
,

where

c5 = −54(9 + 4
√

5)

c4 = 1030(161 + 72
√

5)

c3 = −7920(2889 + 1292
√

5)

c2 = 18780(51841 + 23184
√

5)

c1 = 216(930249 + 416020
√

5)

c0 = −1944(16692641 + 7465176
√

5)

d = 1000
√

5(219602 + 98209
√

5)

With everything now so concrete, we can verify that all our numerics were correct:

that f does in fact de�ne a map C → E, branched only above ∞, and with a triple

point in C. This completes the construction of a curve C which admits a map to E.

5.4 Thickening to a family

Our goal ought to be larger than simply constructing one curve that admits a map of

the desired type to one elliptic curve; we would like to �nd, for each elliptic curve E,

a curve C which admits such a map to E. We would like to perform a degeneration

similar to the one we did in the totally rami�ed case. Unfortunately, the process here
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is much more complicated, and we have only the following partial result so far:

Theorem 5.4.1. Let R be the ring C[t]/(t2). Let Ct be the genus-2 curve given by

y2 = x(x− 1)(x− (a0 + a1t))(x− (b0 + b1t))(x− (c0 + c1t)),

where

a0 = 81 + 36
√

5 a1 =
7

2
+

47

30

√
5

b0 = 161 + 72
√

5 b1 =
161

27
+

8

3

√
5

c0 = 162 + 72
√

5 c1 = 6 +
161

12
√

5
,

and let Et be the elliptic curve over R with j-invariant 1728 given by

y2 = x3 − x +
t

108
.

Then there is a degree-5 map ft : Ct → Et rami�ed only above ∞ so that there is one

triple point above ∞, and the other two points are unrami�ed.

Proof. The proof is as in the proof of Theorem 5.3.1. The equation for the map

involves coe�cients that take much space to write. Therefore, we have relegated

them to Appendix A. �

In fact, we know how to extend the genus-2 curve Ct in Theorem 5.4.1 to C[t]/(t3):

Conjecture 5.4.2. Let R be the ring C[t]/(t3). Let Ct be the genus-2 curve given by

y2 = x(x− 1)(x− (a0 + a1t + a2t
2))(x− (b0 + b1t + b2t

2))(x− (c0 + c1t + c2t
2)),
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where

a0 = 81 + 36
√

5 a1 =
7

2
+

47

30

√
5 a2 =

37

432
+

1241

32400

√
5

b0 = 161 + 72
√

5 b1 =
161

27
+

8

3

√
5 b2 =

967

7290
+

961

16200

√
5

c0 = 162 + 72
√

5 c1 = 6 +
161

12
√

5
c2 =

193

1440
+

971

16200

√
5,

and let Et be the elliptic curve over R with j-invariant t2 + 1728 given by

y2 = x3 − x +
t

108
.

Then there is a degree-5 map ft : Ct → Et rami�ed only above ∞ so that there is one

triple point above ∞, and the other two points are unrami�ed.

This is only a conjecture, as we have not yet performed the computation analogous

to that of Theorem 5.4.1. The computation is signi�cantly more tedious, but we

expect to encounter no new di�culties in performing it.

The choice of elliptic curve in Theorem 5.4.1 may be surprising, since the elliptic

curve y2 = x3 − x also has j-invariant 1728. However, we would like to extend this

elliptic curve to a family parametrized by t with j-invariant 1728 + t2 over C[[t]]. One

such elliptic curve over C[[t]] is y2 = x3 − x + h(t), for some h(t) ∈ C[[t]]. The image

of one such h(t) in C[[t]]/(t2) ∼= C[t]/(t2) (or even C[t]/(t3), as in Conjecture 5.4.2) is

t/108.

We now explain the process by which we found these coe�cients. We now revert

to a di�erent parametrization of the family of elliptic curves and use the elliptic curve

Et : y2 = x3 − 3
t2 + 1728

t2
x + 2

t2 + 1728

t2

over C(t), which has j-invariant t2 + 1728.

We look for curves of the form

y2 = x(x− 1)(x− a(t))(x− b(t))(x− c(t))
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mapping to the elliptic curve

y2 = x3 − 3
t2 + 1728

t2
x + 2

t2 + 1728

t2
.

We let a(t), b(t), and c(t) be power series in t, with a(0) = 81 + 36
√

5, b(0) =

161 + 72
√

5, and c(0) = 162 + 72
√

5. To do this, we let t0 be some 10−n, for a

decently-sized n, so that some consecutive string of digits in a(t0)−a(0), b(t0)− b(0),

and c(t0)− c(0) hand us the coe�cient of t1 in these power series. Letting t = 10−30

is su�cient for recognizing the next terms of the power series; the coe�cients of the

linear terms of a(t), b(t), and c(t) are then seen to be

a1 =
7

2
+

47

30

√
5,

b1 =
161

27
+

8

3

√
5,

c1 = 6 +
161

12
√

5
.

From here, it is now possible to compute as many terms as desired from the series

expansions of a(t), b(t), and c(t). To demonstrate the algorithm, we compute the

quadratic terms. First, it is necessary to compute the power series expansions in t up

to the quadratic term of the roots of the cubic polynomial

x3 − 3
t2 + 1728

t2
x + 2

t2 + 1728

t2
;

we �nd the roots to be

r1(t) = −72

t
− 1

3
− t

54
− t2

34992
+ O(t3),

r2(t) =
2

3
+

t2

17496
+ O(t3),

r3(t) =
72

t
− 1

3
+

t

54
− t2

34992
+ O(t3).
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Now, we compute the power series expansions of the periods. Let

ωt =
dx√

x3 − 3 t2+1728
t2

x + 2 t2+1728
t2

.

Then the power series expansion for ∫ r2(t)

r1(t)

ωt

is

αt1/2 + βt3/2 + O(t5/2),

and the power series expansion for ∫ r3(t)

r2(t)

ωt

is

−αit1/2 + βit3/2 + O(t5/2),

where

α = 0.30901244621689531973897505786587667 . . . ,

β = 0.00098057069999303135023900361703941 . . . .

Call these periods I1 and I2.

Similarly, we compute power series for the four periods Q1, Q2, Q3, Q4 of the genus-

2 curve

y2 = x(x− 1)(x− a(t))(x− b(t))(x− c(t))

with respect to the di�erential dx
y

up to the quadratic term, leaving a2, b2, and c2
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terms in the expansion. Now, by the hypotheses we made in (5.3.1), we know that

3Q1 = Q3,

3Q4 = Q2,

I1Q1 = −I2Q4.

Substituting in the appropriate power series and truncating as appropriate, we obtain

a system of three linear equations in the three variables a2, b2, c2. Solving these

equations gives us

a2 = 0.17129507284189009300135137351845182667 . . . ,

b2 = 0.265293223164579431304821281930288591407 . . . ,

c2 = 0.268053827540265172544031334191681165555 . . . .

Using a similar method as before, we �nd that

a2 =
37

432
+

1241

32400

√
5,

b2 =
967

7290
+

961

16200

√
5,

c2 =
193

1440
+

971

16200

√
5.

While this process is tedious to perform, it is clear how one could carry it out in

general to obtain further coe�cients of the power series expansions of a(t), b(t), and

c(t).

The eventual goal of this process is to write a(t), b(t), and c(t) as explicit algebraic

functions of t, not just elements of C[[t]]. Once we have enough terms of the power

series expansions for a(t), b(t), and c(t), we can hope to algebraize the expressions.

However, before we can do that, we need a bound on the degree of a(t), b(t), and c(t)

are, as algebraic functions over C(t). We can derive such a bound by looking at the

global structure of the family of genus-2 curves that admit covers of the desired type

to elliptic curves.
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Figure 5.8: The red part of the �gure is a fundamental parallelogram for the same
elliptic curve as that of the square. However, by sliding the top edge of the parallel-
ogram one unit over, we have performed a Dehn twist on the elliptic curve.

5.5 Global structure of the family

What we want to do is to �nd an irreducible closed substack Z of the moduli stack

of genus-2 curves with a di�erential, so that Z maps to the j-line (or A1) of elliptic

curves by a map of the given type. In this section, we show how to compute its

degree, which in this case is 9. We can do this directly with the origami diagram.

To do this, consider starting with an elliptic curve represented by a square as its

fundamental parallelogram, and transforming the parallelogram through various other

ones until we reach another parallelogram which represents the same elliptic curve

(see Figure 5.8). This amounts to performing a Dehn twist, or equivalently an element

of the mapping class group, on the elliptic curve. As we perform such an action on

the elliptic curve, we drag the genus-2 curve above it as well, possibly sending it to a

genuinely di�erent genus-2 curve, as we see in Figure 5.9. The orientation-preserving

part of the mapping class group of an elliptic curve is PSL2(Z). Hence, we must see

what PSL2(Z) does to the genus-2 curves in the �ber.

At this point, it is easier to work not with the origami diagram directly, but with

an equivalent description. We instead describe the origami as a pair of permutations

(g, h) ∈ S5 × S5, as follows. Number the squares in the origami diagram from 1 to 5.

(There are many ways of doing this; choose one at random, since the choice won't be

relevant at the end.) Let g be the permutation given by moving one square to the right

in the numbered diagram, and let h be the permutation given by moving one square

up. Now, g and h generate a transitive permutation group, and their commutator

[g, h] is a 3-cycle. We can easily convert between the origami diagram and the pair
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Figure 5.9: This is the genus-2 curve we obtain by applying the Dehn twist as shown
in Figure 5.8 to the genus-2 curve in Figure 5.4. To turn the �gure back into an
origami diagram with squares, we can cut and paste some of the identi�ed edges. We
have labeled the resulting squares by color. This is shown in Figure 5.10.

Figure 5.10: This is a rearrangement of Figure 5.9 back into squares.
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of permutations, with an ambiguity of drawing an origami diagram with a di�erent

choice of edge cuts, and of choosing pairs of permutations which are simultaneously

conjugate: (g, h) and (g′, h′) are simultaneously conjugate if there is some σ ∈ S5 so

that σ−1gσ = g′ and σ−1hσ = h′. In this case, we get isomorphic origamis.

Now, we pick two generators of PSL2(Z) and observe their actions on permuta-

tions. We pick the generators

S =

(
1 1

0 1

)
, T =

(
1 0

1 1

)
,

which act on (equivalence classes of) permutations by S(g, h) = (g, gh) and T (g, h) =

(hg, h). A computation shows that S and T have action on equivalence classes as

given in the following diagram:

(234), (153) T //

S
��

(15342), (153)
T ..

S
��

(13425), (153)
S

nn

T

tt

(234)(15342) T //

S
��

(15342), (13425) T //

S
��

(23)(45), (13425)

S

		

T
��

(234), (15324)

T

TT
S

88

(15342), (23)(45) S //

T

UU
(15342), (14352)

S

hh

T

ff

Each equivalence class of pairs of permutations in the diagram above corresponds

to one preimage of an (arbitrary) elliptic curve with di�erential. Hence, the map

Z → A1 has degree 9.

In fact, it is perhaps worth pausing here to note that we can get a Bely�� map out

of this: if we compactify Z and A1, we get a map Z → P1 which is rami�ed only

above three points: 0, 1728, and∞. A change of variables then gives us a Bely�� map.

An unfortunate consequence of the fact that Z → A1 has degree 9 is that we

cannot hope to get a reasonable parametrization for a family of curves C over the
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Legendre family of elliptic curves y2 = x(x − 1)(x + 1 − t), since the map from the

Legendre family to A1 has degree 6. Instead, we parametrize our family of elliptic

curves directly by j-invariant. If j 6= 0, 1728 and we let t =
√

j − 1728, then the

elliptic curve

y2 = x3 − 3
t2 + 1728

t2
x + 2

t2 + 1728

t2

has j-invariant j. We use
√

j − 1728 rather than j − 1728 because j − 1728 has a

double zero on the j-stack at j = 1728; hence
√

j − 1728 is a local parameter on the

j-stack at j = 1728.

5.6 Extracting number �elds from origamis

Just as in the case of Bely�� maps, we can extract number �elds with limited rami-

�cation from origamis. Although the examples coming from the origami families in

the previous section are solvable and thus not so exciting from the perspective of

constructing �elds, the techniques are worth presenting here.

Let us start with the degree-3 origami, where the equation of the genus-2 curve is

y2 = x5 + (1 + 9t)x4 + 33tx3 + 40tx2 + 16tx =: ft(x).

We can factor ft as

ft(x) = x(x + 1)gt(x), gt(x) = x3 + 9tx2 + 24tx + 16t.

The polynomial discriminant of gt is 2833t2(t−1); hence if t = 4 (for example), then the

polynomial discriminant is 21234, and the �eld discriminant of the �eld Q[x]/(g4(x))

is 34. If t = 9, then the polynomial discriminant of Q[x]/(g9(x)) is 21137, and the �eld

discriminant is 2335. Hence, we have constructed some �elds rami�ed only at 2 and

3. (In this case, of course, there are much quicker ways to construct cubic �elds of

small discriminant.)

We can do the same thing with the degree-5 origami, where the equation of the
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genus-3 curve is

y2 = x(x + 1)gt(x), gt(x) = x5 + 25tx4 + 200tx3 + 560tx2 + 640tx + 256t.

The polynomial discriminant of gt is 23255t4(t − 1)2. Letting t = 5, we have a �eld

Q[x]/(g5(x)) with polynomial discriminant 23659 and �eld discriminant 2459. Its Ga-

lois group is F5 = (Z/5Z) o (Z/5Z)×.

There are other number �elds that can be extracted from origamis. Let us return

to the degree-3 origami, and consider the elliptic curve E4 corresponding to t = 4,

namely y2 = x(x + 1)(x + 4). This elliptic curve has conductor 24, and E4(Q) ∼=
C2 × C4. One of its torsion points is P = (2, 6). The x-coordinates of the preimages

of P under the origami map satisfy

x3

(3x + 4)2
= 2,

or x3 − 2(3x + 4)2 = 0. The number �eld corresponding to this cubic polynomial has

discriminant −2234. We can also look at the preimage under the map for the degree-5

origami; the x-coordinates of these preimages are roots of the quintic polynomial x5−
2(5x2 + 20x + 16)2 = 0; this polynomial generates a �eld of discriminant (−1)2243255

and Galois group F5.

We can do something similar with points of in�nite order. Let t = 10 so that E10

is the elliptic curve y2 = x(x+1)(x+10), which has rank 1 and conductor 25× 3× 5.

A generator of E10(Q) modulo torsion is (−5, 10). The x-coordinates of the preimages

under the degree-3 origami satisfy x3+5(3x+4)2 = 0, and the corresponding �eld has

discriminant 223352. Under the degree-5 origami, the preimages satisfy x5 + 5(5x2 +

20x + 16)2 = 0, and the corresponding �eld has discriminant 2459 and Galois group

F5.
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5.7 Computations

The computations described in this work were done using [J+10], [S+10], [Sym12],

[The08], and [Wol07].



Chapter 6

Future possibilities

6.1 The Cohen-Lenstra heuristics

My work brings up many questions that would be interesting to investigate in the

future. Regarding the Cohen-Lenstra heuristics and roots of unity, it would be inter-

esting to gather numerical evidence for equidistribution of the invariant in a wider

class of number �elds. This is a tractable problem in theory; we can write down

algorithms to compute the invariants associated to more general number �elds. Un-

fortunately, actually running them takes far longer, as their complexity grows rapidly.

However, it may be possible to do a limited amount of veri�cation, perhaps for non-

Galois cubic �elds or for A5 �elds.

Another possibility to investigate is the dependence on the number of primes

dividing the conductor. My numerical work here is only for the prime conductor

case. While we do not suspect that the behavior of prime-conductor C3 �elds di�ers

from that of arbitrary C3 �elds, it would still be nice to have numerical evidence

to suggest that the behaviors are identical. Doing these numerics is well within our

computational ability.

Finally, we noted that we expect the invariant to be asymptotically equidis-

tributed, but that there is a small but de�nite bias in favor of invariant 1 for relatively

small �elds. At the moment, we have no explanation for the origin of this bias; any

explanation for this behavior would be very exciting and would be expected to change

83



84 CHAPTER 6. FUTURE POSSIBILITIES

the way we think about the Cohen-Lenstra heuristics.

Finally, a proof of any nontrivial case of the Cohen-Lenstra heuristics in the num-

ber �eld case would be most welcome. At the moment, this seems to be outside of

the realm of possibility, but we can hope that someone will have a new idea that will

open up the Cohen-Lenstra heuristics to attack.

6.2 Bely�� maps and origamis

We would like to be able to construct many more explicit examples of origamis. At the

moment, we can construct many examples of totally rami�ed origamis, but the non-

totally rami�ed case is much more di�cult. We would like to complete the family of

3-1-1 origamis which was started in this work; I am con�dent that I can compute the

entire family, but it is quite a time-consuming process that I hope to �nish eventually.

Explicit examples of higher-degree families would also be interesting.

Continuing on with branched covers of curves, perhaps the next place to go after

origamis is to unrami�ed covers of higher-genus curves. We expect that some of the

techniques used here will be applicable in this case as well, and indeed, we have some

explicit examples written down.

Motivating this desire for explicit covers of curves is the connection to number

�elds with limited rami�cation. Our totally rami�ed origamis do provide us with

examples of number �elds with limited rami�cation, but these �elds are all solvable

and can thus probably be constructed in a less involved manner through class �eld

theory. By contrast, the non-totally rami�ed origamis generally give us non-solvable

�elds, and we would be more excited to �nd these and to understand how many of

them exist.



Appendix A

Numbers involved in the Proof of

Theorem 5.4.1

In this appendix, we write down the map needed to prove Theorem 5.4.1. The reader

is strongly advised not to look at the numbers in this appendix, but only to be

appeased by their presence.

The map from Ct to Et in Theorem 5.4.1 is of the form (x, y) 7→ (f1(x), f2(x)y),

where

f1(x) =
x5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

b2x2 + b1x
(1 + bt)

and

f2(x) =
x6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x + c0

(b2x2 + b1x)2
(1 + dt).

Now, the ai's, bi's, and ci's are elements of C[t]/(t2), and the constant terms of the

ai, bi, ci are the same as in Theorem 5.3.1. We denote the linear term of ai by a1
i , and

similarly for the bi and ci. Then we have

a1
0 = {−(75(751878161950148022139896155348384918364792135486613076100908884583524065631543785049910794356809061528

4438749279449494854184492327443389410559288599134586937069215555073711077655615884457345219000212841218820709629783929

6872671781194389839478454142449271932087742562297108073974426325192615591431170025801913083643086339687596310037045656

0288503552959787545959172905309042899060560905411008281739575836795460157192149864055430087593490378570977327795652261

1695377725463306452665385118495564945961797338732289926957547911626886256897827001365547985759505616272926349568891355

8562831223559141089440466515036443528176199890910759368501343282682974461750393173101202764688799219852845919020120080

7070185233159750780123185160819091646400936985950392407039244338175991662534595625395488583292423822619883881864503470

4954809459846998334733454302981147329668664653528406390265197049742205651078526824023577363871250984665883310179485561
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95059385756342909945488610612470281578188530139145034017292797620742389423243581402615293383023051670818104904596739550
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√
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8461978684485098371621459334567459217526288574893480232312704623309116494044033293166008667207161090474546229572393301
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√
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√
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6566468097222559847861738280151001786532420682089525740962931399011448410375714886824019401723080000422506624884640445

8272648367125993485406121687243340737394923010277908155058838507177177685710641384057787828847462478148232020441143724

9964437042358843359823919312522154029611612346104822681364751425492699098675890220276991515070173873281139858340276171
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0758050272133513752158166475753887537920841805582811992080715178341659695123035986422520553886010540297879345920280766

3855968028228960411736744628977536342461945309767770786673676125423873299953806720158115376106775321160390632897682621

9325312172181388405301861369718421125368525150642212025565565000064802350231751252339327836948419622415676048921628294

1442582733268000983242736804908360365465913229150751227834584646050148888653681044645112116868784056399933167701629353

7434777267549002503293795778172854019360715030048058969329673753005383286216514471348098617325298503394618284745332863

9726047810987461702517915248983956940968293253521071459643851125999299935159984853687590011511503970440381175417251990

6825421153487178686589308813850936776732842196710381405174002462806197734813709939372611329991726357391186127656894421

99566478457772102618000897476681280760830637366167402194598684366032719973412618029758061780889637354284701349055532278

8548263311520570 + 2410374843319174909093018581622596485923632834650999148472111735831034539706597338764796067137706790

30125453978416224013507924033553291575075905614334334307557634501609081844395080510604177580956294056846042163232737724

62040312997301456858507560295277542687843860658736386682157380413081811920141554813192636293195945305555338386605626622

46719829564069138076653579566161012046988021664667289256461223142584362787576224108435211329618846320345501158909708881

27917050797247666030260606624195137974685050693695045952982447811626304332878212166836781537718329661003670560946918045

36145799876658822197578365860738677751084564690031464486178764873277019628009704972460588074831011850538905667941527505

75588585497077117115660029566411866528474343740261046052969255562384934324490362620251757104284383493133052886618635750

83875235503050101425593543286640659062104524727120351601771935970656589867683016102375876501840634795843678976732156524

27337966689524664810165802454962616405243565788392073518012221254842209726508255796424717779451448910102855624677869164

85645834875037762974640718173765436890378679777252465844918571248805253424812285185596007036666221499776405350895907814

47404940005647180875335138580708205347170007739862712530993352156915107058772339994247689850141220256097393333891720554

06494544339588810464697536065123338992717864115619774189756910775621404762455841625478086002327833253864089219850560061

501959619
√

5))/(41635859389774187568809781739244758803184839740975989149955671751350981315738834848358942412761557176898

63380276405147106334074818631510753957855428709879033438834344172610309280715209419745543649258768026069722307948909819

57812991058433716540175858288330610449073567036271409659648146449174693662941731921255824370929864302070220588607055609

13611359163653736762847899220030101086164905157023071784374022399572662358634510182741941693086480369981918255494767648

44122059914830385054863269382893448581446561097268659793367433912946473837297796738637620378821193775165657797083403908

22844450645137103278948617751656114255516310170257339328892629946585589871039770734990432258804026308567368617478276529

12495958888518685878331188401895805407481767073949582525771664776588860191429098128908277874907326130442476674084849751

44005570612568637305272697957927477351680797098259790748590293897561595579201641178303737935352661144468200427122695108

12973099416274321311787712117863945791338995777176658493431626824398532635420316746436836230191045840177084049406292915

00822582737385007401174104444970549351967650609066614989690113449138066875383239635044296166892441700813535525523412312

06489985309604462747831346013352577012329299486303813302410309870989891064517489634507384941631337330947613008242167488

4173074681326927788073599019980811614785747408929724834329099978915193888948401064589723391674115766550785395687246241+

18620122379431599121591464200488089951062569053575624011377518066954100728302087278913603027456964579597750105720112516

93822920622026507963583112041412761993721395852701365525587823193879251733091957937004810377099792449156533076592287144

37882734938603545752442840018112189626272896157582213277346568839159780830116443519447463765276027215082916996682568230

50670001501042548902046993340117490650099031758507330973331128771987836224778561736475236760171141835215071351798157951

55161793085915916248926334487171580132606179640339954817167479776626722395096274092093843079689292373275717404940114812

43732155147842411562254707461860289443959593358050965719333439047676633685251320742738980420954234705466225674824368627

67562209033070746893481642545840096033193091206697221490956315685132909048495082474493838728977603061975004191920232842

80802913768294147379495569099044033738044130565754506597041948081738021470416869389717378364610476221754333789337392240

29177961823505970293628184920111347086491096675400747300462637056441979041075526042627585057098238010697100226286613349

08535875291704646077314679904746247409621339169569193035802503358514561729993113137862924254583848070044118975230808434

99681516096556777826358695360258198987159241689094049787324458515944045775626702040481196715030440743283776977298513442

0250178554228836410921065813766755968383299665771507067358733889925578873054619785227376123693642065496
√

5)}

c14 = {(1525791444949213642009794781366452101038073926277289015747515086976216539271189199000940655931668603604665
8481811936098100939898711812588618578219265138733018110692533599925063284437026519491682790680143308052465957746236827

5122391942401446835888959903016903228509651231080651602528202971420644289645559653201551707845704650957221208229297776

1577274372256117670908539053490612016443725412336309224658255415600470876315077033437090630554387064006577206185533502

1628952989955505985202992196196638008885396274068427455724067478367424052232299192780314976867599162028918293317700119

2208209005147078243279870871374183352574624843866949566576378368001409593964426212005730806555518590006930455054277142

8548714541533805254933173247760611693109001275123987079136397504400704444314578127860577451315102970345624278193214739

1450208276777565520865092612992810686025004722876211443712035188982202598432876551798630602453172113746425887913365543

9331790211937663219884779179641263660789328243953775337900430795571772387994502380538147022211801266431028270866659650

1713806028523041154216877312820133922828562688279645030348345487440246703466125013753223544383290440874612176009139780

026063745757556852232772173874297719582184824048787660 + 68235467807881397185690518715660657031677603780500738668731168

1936465298862454849693950244248084644497936199789305177073297812045500998045769894620640661627348089933567215414670590

78567427273638481092709884273212175599667637207693775359135940234858438843579140251039308694641506986392674887735941315

08067505870931581228131732452222498285672075852715481627753058538650562480006696878877970345774400279779490901417897848

65848304537759629043753495840956250277202489641180358302779068383102712458454995495748583602706581467624581174626520482

73930186154940242340343522791542010726317092196166644877413670950631713870104724239414441029863014822580135108308041338

12706577690260426145839350550909460590766396284208993929812361533965006045893382474939843450082701817702901025272759622

99768002380238503920831498759113921878216251280270278924010702779780672775055235273795000322932685657318467013216714325



94 APPENDIX A. LONG NUMBERS

88134424977758930231314947060928861258445829738427153194911211329400400373181294952726242484029389117606046675554190390

61655446109076300726353563715675860220799499106493897333975807609975760732652213553633542680586292481648227165891278065

28732384710343943939191607508423005607215985382043462118004381903746228706283889055316771
√

5)/(6116939332376492591759064

42352645692834444239759510254364165936336953792043114754808641577242840108183063803666802529045437992204918863523579011

23794706031912405497322674862222407606605134410795620563530871607518962466781355924136372689563507241427576556716358292

60699033515350043056577067440822069711572095802733013540252738084001383225258154542024612996940029817256456221477328517

77967195996965341644090026768140366814877776076104181881726090965217318313599425195452790537245921936822863292278417800

55205390095529844878405244417904047430252935611151940201919561967326726788687777840424483191571138428883957319202637485

02646793726632403545472567590535073294379017791890522093119750574342684130210175159450587478910018952393071499815206450

95401191538665575463236045579891271759318971102998066191687066024358373723016075152432923895708474270123303388601719089

90275313231918908394249482856781074179175785373863445348342377275494058709312789902924023252528435137229108105122897074

29690482184517980339807783458081392343249600397409105042508744093888122690820055025598275086301295883914741199611468012

85026810130341976365418408671192545554625442846904458147848302491090799385476297288868260287007198022375594193572384137

72 + 273557843228720352877839175098882473227266165385248225714694351670921656526037755228508314374566902157870541651901

13336349984016060926664411822547053260847357182694180616873517960543144285794892873181599685296522156972637466431136732

60044859500286809690889649898971027139567128727611830381427471271973871398440229552297780458910507831652519792752615130

22323570484680575565434009989456005149214660602157420941318648914320794165398996880671676586207976560039608437268117190

15855387884077441786540952522653213504047600245052151432954543260340957614143571722353060893268210685713146273567235045

36671566626405354402040827983976869215319646092106177148471112384630373853378734364368336933809289248169474841780432253

37741210737524397199068841600805948519815779210689214709292843673823010809583510061263894811661189688501200370499825168

50875941674570924246090243151395889248357337983957040170601666137459321322502715118714981150104656659862107536265789522

51564209925032925958586741472072403534854298767760245269472112721349003333996563747622839931441466484216376109987489269

00018024581688924964526313635728714620065788381716594522717314349833982639314082080284258050352509399991662289695340444

64870346819395181664493129788208
√

5)}

c15 = {−(758964876433740262031460718319859215532806936026666243479301424618139779789053771319823857971460849033722

7303469247803183379533688098212646853730125551322679328395246062099625244708457568617129719141086784343588262217852289

7297869762035152779032553880613832119815815230431431218782712005722015761262575275212200940875742021510280033018127667

3923853537522494631331655073577197857792405969483804590299739868358277726893297291904519201337402057425703184280722763

2042754581975260952073722548795190712235290862725467187735902744707923360115685703167815327175306351737822078028988660

5093297074173437070632883064709413805982566015840695201221740850325200430469586353881976542555314869945854491581862852

4247315864784444071075891715766590453923895064773212000408573964674040264595461852587731671951709864964841467429827075

1697545991949790118605540823467372097879311163129115156059291557417351001388877589645013976741732200460042856317483234

41893046596823697908474527906538970416125925463722993946862 + 339419411248114277488436666280138353898217645764557330409

3521166181747521702683802540814082637670199525324829508360942576678735243080765424853565615113202643918754864888493640

3754872211849907202021726862518732022020118872643630622861933678488880582056385815154136363599420052251008588147704345

7912436316802351796598762547909781066389614831634312439891966269973801990459707460746822365655081654847004590244840847

46622740637967752747398966025161559547876415018596363418195179445725861516452053181968475114350725563551779669186184123

24458007441454552040801656552085571429710189967358176561025579558147228549535458777461407390355983732071619489985932631

65013640184091092948456102977712371713800228131172720845517973341162889361725874092723092082522596587777542106686390462

84425987882108097864171069522977879462834546906318213393442911048390486077419004007476025281111606801873045523974694163

7881991669394864920343485299296611762251585586991009385279355878748208928367234642912430901494139027963
√

5)/(20866808530

18132339494135112080450623464259875759365604406691205350859739423504084403377537639693147527018470615672569385755505842

80571001731305306837206576856053955754465595542566262891397045903469073441959871573425679255265291280366362034470273488

23191871137782100145071699999545519343284517625815168031152845100939083963609804253972707653720268600410259190202458745

58968089301322294231010403754851667653457684304641540557207140119418955033659420684559651454319620146469939006962774969

60301297439021030389125572641823687651049895187016142359849478464166787450837104472087937897447159110704932028253784998

51844295969164053980132501431042328745194036213918679168625712852677601483464279246352532658687607499060850802048789135

01771858570363734741085016452877238642898841433637623637984292305504882208069936462915381057339427760425051452343821464

16557221016552281153290321672957124524938546357899116868457786077143987069769754518201698328015552769147920247596328619

95407048558621093338428180 + 933192046939158222944739161595736453385817056715983921339188037014303527662572565684395305

59367482418514144158870826529244674018849627850286866855858667835250950983031178581484705913729213764083618847252436229

45403267167348583445327651289032648780761000479001547594663921932358191696032779823407345763042815343633401967322108708

30620609746103760670556618405524275723397272406529226092577577562978303396017048840500029969284657100223111364875703663

97216681475098416233626282368364406427877925512010740917461317812296661150701683453721583413558146557293103259434025662

85153690011485004278407300406633531497308093058555950158262971444560317164092817708966989293329998580582213399414389573

42180680930716021226515583986816313375264502953585125756948815717691062823721534957435182995246471062611670071257659037

57490132136537682950462170469981348451483166709674202399307690041584198635816696002948967626623829325193890450610109445

44955400312574402981124481461434675538535934767356743682779297203
√

5)}

d = {−(3764319823697395338782061174654769962354702143320794389501549491665992010269267493962197924404400906079826

5927219231767307032288562417212254002545543245931439906078865795054438368087130519338651804695358877773497228165749151
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3568147399296078922306459972290915327791236855066380509744069209930350224827914950436833573512836340978806761463449978

332330509577172489 + 16834550029674799434464777079204745420680874908687501789605775660910144249522120161450582966787127

0457610141346106322263800705595386801943841618053503043031786610415437041613174325882611791082042601849576372897753754

1724118741790334499226344658546378106443648676306206500773460569396276749840467492050819410568828332262915716166293909

04814440091816507713977468
√

5)/(48(469078659588690679450273363325955145969894222677870263195000640775808917464190847283

6648624540535843280317513093814840962529407992264502207230329898775014241625292150786170517104729142673096155614415916

1225699473304608704066693557260596972517329502033178112487553192152152962367401861175675099217670388338823056024926393

903172187361447650237485132655585536280 + 20977835392695918010899641348343881983056947251214592630239410317363959337916

7122758615386065354063196411065276044137816187940628815102260278680288312731938593387891807226359666101895109188378103

8559077154165967545146918613853265759521202098366538353773094059750871869405050344890406938969221703934959573279384549

7089695636476673035074761003154644431915003041
√

5))}
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